An aggressive driving state recognition model using EEG based on stacking ensemble learning

计算机科学 随机森林 阿达布思 集成学习 人工智能 支持向量机 机器学习 快速傅里叶变换 模式识别(心理学) 朴素贝叶斯分类器 算法
作者
Liu Yang,Qianxi Zhao
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:: 1-22 被引量:5
标识
DOI:10.1080/19439962.2023.2204843
摘要

AbstractAbstractAn aggressive driving state impacts drivers’ decisions, which could potentially lead to accidents. Real-time recognition of driving state is particularly important for improving road safety. However, the majority of modeling in existing studies relies on a single algorithm, which may lead to unreliable predictions. This paper proposes a stacking ensemble aggressive driving state recognition model using electroencephalography (EEG), which is able to combine different heterogeneous classification algorithms. Five types of classification algorithms and their variants are tested and compared to identify suitable base classifiers. All of these classifiers are optimized by Bayesian optimizer before the comparison. Three stacking ensemble recognition models using different meta-classifiers (i.e., logistic regression, random forest, and AdaBoost) and an equal-weight voting ensemble recognition model are established. The aforementioned recognition models are evaluated by using a dataset collected from a car-following simulated driving experiment. Fast Fourier transformation (FFT) and wavelet packet transformation (WPT) are adopted to extract features from raw EEG data. The results suggest that the stacking ensemble recognition models outperform the best single (i.e., support vector machine) model; the random Forest stacking recognition model achieves the best performance and the accuracy is increased from 81.21% to 84.23% using FFT features and from 86.45% to 87.38% using WPT features.Keywords: Aggressive drivingdriver staterecognition methodmachine learningEEG Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China (72001163 and 51979214).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要羊完成签到,获得积分10
刚刚
花小胖完成签到,获得积分10
刚刚
微笑惊蛰应助英俊亦巧采纳,获得20
刚刚
小火孩完成签到,获得积分10
1秒前
小蘑菇应助粗暴的夏天采纳,获得10
1秒前
简单的卿完成签到,获得积分10
2秒前
2秒前
小马甲应助端庄书雁采纳,获得10
2秒前
咕咚发布了新的文献求助10
2秒前
鱼刺鱼刺卡完成签到,获得积分10
2秒前
高子懿完成签到,获得积分10
2秒前
小土豆完成签到,获得积分10
2秒前
苹果树下的懒洋洋完成签到 ,获得积分10
3秒前
大萌发布了新的文献求助10
3秒前
00完成签到 ,获得积分10
3秒前
风清扬应助等待戈多采纳,获得30
3秒前
laiwei完成签到,获得积分10
4秒前
silin发布了新的文献求助10
4秒前
Wuyi完成签到,获得积分10
4秒前
Kins完成签到,获得积分10
4秒前
yoqiiy发布了新的文献求助10
4秒前
无花果应助Justtry采纳,获得10
4秒前
4秒前
晴天完成签到,获得积分10
4秒前
搜集达人应助ddd采纳,获得10
5秒前
san完成签到,获得积分10
5秒前
蓝天应助Ryan123采纳,获得10
6秒前
看文献的高光谱完成签到,获得积分10
6秒前
AC赵先生完成签到,获得积分10
6秒前
7秒前
shuyan完成签到,获得积分10
7秒前
搜集达人应助1256采纳,获得10
7秒前
希望天下0贩的0应助124578采纳,获得10
8秒前
社牛小柯完成签到,获得积分10
8秒前
罐罐儿完成签到,获得积分0
8秒前
田様应助果嘿嘿采纳,获得10
8秒前
8秒前
paprika完成签到,获得积分10
9秒前
9秒前
科目三应助youknowdcf采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959