An aggressive driving state recognition model using EEG based on stacking ensemble learning

计算机科学 随机森林 阿达布思 集成学习 人工智能 支持向量机 机器学习 快速傅里叶变换 模式识别(心理学) 朴素贝叶斯分类器 算法
作者
Liu Yang,Qianxi Zhao
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:: 1-22 被引量:5
标识
DOI:10.1080/19439962.2023.2204843
摘要

AbstractAbstractAn aggressive driving state impacts drivers’ decisions, which could potentially lead to accidents. Real-time recognition of driving state is particularly important for improving road safety. However, the majority of modeling in existing studies relies on a single algorithm, which may lead to unreliable predictions. This paper proposes a stacking ensemble aggressive driving state recognition model using electroencephalography (EEG), which is able to combine different heterogeneous classification algorithms. Five types of classification algorithms and their variants are tested and compared to identify suitable base classifiers. All of these classifiers are optimized by Bayesian optimizer before the comparison. Three stacking ensemble recognition models using different meta-classifiers (i.e., logistic regression, random forest, and AdaBoost) and an equal-weight voting ensemble recognition model are established. The aforementioned recognition models are evaluated by using a dataset collected from a car-following simulated driving experiment. Fast Fourier transformation (FFT) and wavelet packet transformation (WPT) are adopted to extract features from raw EEG data. The results suggest that the stacking ensemble recognition models outperform the best single (i.e., support vector machine) model; the random Forest stacking recognition model achieves the best performance and the accuracy is increased from 81.21% to 84.23% using FFT features and from 86.45% to 87.38% using WPT features.Keywords: Aggressive drivingdriver staterecognition methodmachine learningEEG Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China (72001163 and 51979214).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zheng完成签到,获得积分10
刚刚
杜兰特工队完成签到,获得积分10
1秒前
Jasper应助吲哚好呀采纳,获得30
2秒前
2秒前
指导灰发布了新的文献求助10
3秒前
3秒前
桐安发布了新的文献求助10
3秒前
asdfj完成签到,获得积分10
4秒前
5秒前
5秒前
英姑应助寒冷的奇异果采纳,获得10
6秒前
赘婿应助doge采纳,获得10
6秒前
啊琛完成签到,获得积分10
6秒前
嗒嗒发布了新的文献求助10
6秒前
7秒前
可爱的函函应助whh123采纳,获得10
8秒前
越野完成签到 ,获得积分10
9秒前
9秒前
研友_Z7WGlZ发布了新的文献求助10
9秒前
zyj发布了新的文献求助10
9秒前
姜乐菱完成签到,获得积分10
11秒前
JiahaoRao发布了新的文献求助10
11秒前
情怀应助beleve采纳,获得10
11秒前
shengdong完成签到,获得积分10
11秒前
完美世界应助鲜艳的芝麻采纳,获得10
11秒前
璟晔发布了新的文献求助10
11秒前
Lucifer完成签到,获得积分10
12秒前
12秒前
桐桐应助巨人的背影采纳,获得30
12秒前
12秒前
camellia发布了新的文献求助10
13秒前
Zheng发布了新的文献求助10
14秒前
Shaw发布了新的文献求助30
14秒前
胖大星完成签到,获得积分10
14秒前
15秒前
南风完成签到,获得积分10
15秒前
hhha发布了新的文献求助10
16秒前
丘比特应助香蕉书竹采纳,获得30
17秒前
希望天下0贩的0应助www1234采纳,获得10
17秒前
壮观复天发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038