An aggressive driving state recognition model using EEG based on stacking ensemble learning

计算机科学 随机森林 阿达布思 集成学习 人工智能 支持向量机 机器学习 快速傅里叶变换 模式识别(心理学) 朴素贝叶斯分类器 算法
作者
Liu Yang,Qianxi Zhao
出处
期刊:Journal of Transportation Safety & Security [Taylor & Francis]
卷期号:: 1-22 被引量:5
标识
DOI:10.1080/19439962.2023.2204843
摘要

AbstractAbstractAn aggressive driving state impacts drivers’ decisions, which could potentially lead to accidents. Real-time recognition of driving state is particularly important for improving road safety. However, the majority of modeling in existing studies relies on a single algorithm, which may lead to unreliable predictions. This paper proposes a stacking ensemble aggressive driving state recognition model using electroencephalography (EEG), which is able to combine different heterogeneous classification algorithms. Five types of classification algorithms and their variants are tested and compared to identify suitable base classifiers. All of these classifiers are optimized by Bayesian optimizer before the comparison. Three stacking ensemble recognition models using different meta-classifiers (i.e., logistic regression, random forest, and AdaBoost) and an equal-weight voting ensemble recognition model are established. The aforementioned recognition models are evaluated by using a dataset collected from a car-following simulated driving experiment. Fast Fourier transformation (FFT) and wavelet packet transformation (WPT) are adopted to extract features from raw EEG data. The results suggest that the stacking ensemble recognition models outperform the best single (i.e., support vector machine) model; the random Forest stacking recognition model achieves the best performance and the accuracy is increased from 81.21% to 84.23% using FFT features and from 86.45% to 87.38% using WPT features.Keywords: Aggressive drivingdriver staterecognition methodmachine learningEEG Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the National Natural Science Foundation of China (72001163 and 51979214).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十八楼完成签到,获得积分10
1秒前
1秒前
1秒前
LBX应助沐浴阳光的橙子采纳,获得50
2秒前
huangxiaoniu完成签到,获得积分10
3秒前
早早干饭应助赖道之采纳,获得10
3秒前
3秒前
zhanzhanzhan完成签到,获得积分10
4秒前
mojinzhao完成签到,获得积分10
4秒前
文艺的芫发布了新的文献求助10
5秒前
咩咩羊发布了新的文献求助10
5秒前
Altria完成签到,获得积分10
5秒前
天天快乐应助谦让不二采纳,获得10
5秒前
五虎完成签到,获得积分10
5秒前
坦率的海豚完成签到,获得积分10
5秒前
slby发布了新的文献求助10
6秒前
Rain1god发布了新的文献求助10
6秒前
辛勤香岚完成签到,获得积分10
6秒前
英姑应助ivysci00采纳,获得10
7秒前
CipherSage应助哦豁采纳,获得10
7秒前
8秒前
感动城发布了新的文献求助10
8秒前
qqqqqqy应助冰魄落叶采纳,获得10
9秒前
9秒前
栗子鱼发布了新的文献求助10
9秒前
科研小白完成签到,获得积分10
10秒前
笑点低诗桃完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
淡淡乐巧完成签到 ,获得积分10
11秒前
12秒前
甜美无剑应助清浅采纳,获得20
12秒前
yixing发布了新的文献求助10
12秒前
skskysky完成签到,获得积分10
12秒前
小包包发布了新的文献求助10
12秒前
zzz发布了新的文献求助10
13秒前
13秒前
棋士发布了新的文献求助30
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124