清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Understanding the origin of the improved sodium ion storage performance of the transition metal oxide@carbon nanocomposite anodes

纳米复合材料 氧化物 阳极 材料科学 碳纤维 过渡金属 离子 金属 化学工程 纳米技术 无机化学 冶金 化学 复合材料 电极 有机化学 复合数 工程类 催化作用 物理化学
作者
Xin‐Tao Yang,Tingyi Huang,Yaohui Wang,Jin‐Chao Dong,Qiulong Wei,Hua Zhang,Xiu‐Mei Lin,Jianfeng Li
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (17) 被引量:2
标识
DOI:10.1063/5.0149871
摘要

Transition metal oxide (TMO) anodes show inferior sodium ion storage performance compared with that of lithium ion storage owing to the larger radium size and heavier elemental mass of Na+ than Li+. Effective strategies are highly desired to improve the Na+ storage performance of TMOs for applications. In this work, using ZnFe2O4@xC nanocomposites as model materials for investigation, we found that by manipulating the particle sizes of the inner TMOs core and the features of outer carbon coating, the Na+ storage performance can be significantly improved. The ZnFe2O4@1C with a diameter of the inner ZnFe2O4 core of around 200 nm coated by a thin carbon layer of around 3 nm shows a specific capacity of only 120 mA h g-1. The ZnFe2O4@6.5C with a diameter of the inner ZnFe2O4 core of around 110 nm embedding in a porous interconnected carbon matrix displays a significantly improved specific capacity of 420 mA h g-1 at the same specific current. Furthermore, the latter shows an excellent cycling stability of 1000 cycles with a capacity retention of 90% of the initial 220 mA h g-1 specific capacity at 1.0 A g-1. TEM, electrochemical impedance spectroscopy, and kinetic analysis show that the inner ZnFe2O4 core with reduced particle size and the outer thicker and interconnected carbon matrix synergistically improve the active reaction sites, integrity, electric conductivity, and pseudocapacitive-controlled contribution of ZnFe2O4@xC nanocomposites, thus leading to an overall enhanced Na+ storage performance. Our findings create a universal, facile, and effective method to enhance the Na+ storage performance of the TMO@C nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
11秒前
12秒前
17秒前
传奇3应助clairevox采纳,获得10
18秒前
29秒前
量子星尘发布了新的文献求助30
32秒前
隐形大白完成签到 ,获得积分10
34秒前
38秒前
sxx发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
45秒前
小美酱完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
55秒前
poki完成签到 ,获得积分10
57秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
香蕉觅云应助烟消云散采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
专一的白萱完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
舒心豪英发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助hihi采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Manzia完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
back you up应助Polymer72采纳,获得200
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661074
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744064
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538