Time-delayed reservoir computing based on spin-VCSEL: interplay between pump ellipticity and performance

垂直腔面发射激光器 油藏计算 材料科学 自旋(空气动力学) 计算机科学 物理 光电子学 光学 激光器 人工智能 循环神经网络 人工神经网络 热力学
作者
Tao Wang,Qing Fang,Hui‐Ming Wang,Yueyang Wang
出处
期刊:Journal of The Optical Society of America B-optical Physics [Optica Publishing Group]
卷期号:41 (12): 2827-2827
标识
DOI:10.1364/josab.540025
摘要

Reservoir computing, a simplified recurrent neural network, can be implemented using a nonlinear system with delay feedback, known as time-delayed reservoir computing. In this paper, we explore two time-delayed reservoir computing schemes based on the fast dynamics of two polarization channels of a spin-VCSEL and investigate their prediction performance for the Mackey–Glass task. Our main focus is on understanding the impact of pump ellipticity on the prediction performance of the two reservoir computing systems, namely, RC X and RC Y . Through numerical simulation, we find that when the pump ellipticity ( P ) is less than 0.73, the prediction performance of RC Y outperforms RC X . However, beyond this threshold, the performance advantage shifts towards RC X . These findings shed light on the importance of considering pump ellipticity when designing and optimizing reservoir computing systems. Furthermore, we also investigate the influence of the ratio between the delay time and input period on the memory capacity of these systems. Interestingly, we observe that using a delay time of 2.8 times the input cycle enables better prediction performance and memory capacity. This choice not only provides an optimal trade-off between memory capacity and computing speed but also avoids the computational slowdown caused by excessively long delay times. In general, our study emphasizes the flexibility and tunability of the spin-VCSEL-based reservoir computing system. By easily adjusting the ellipticity and delay-time parameters, we can optimize the memory properties, resulting in significantly improved prediction performance. Our findings offer valuable insights for enhancing the performance of reservoir computing systems based on the ultrafast dynamics of spin-VCSELs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助yixiaolou采纳,获得10
刚刚
星星应助时笙采纳,获得30
刚刚
2秒前
camellia发布了新的文献求助10
2秒前
爱笑若冰发布了新的文献求助10
3秒前
郭富城完成签到,获得积分10
4秒前
hhhblabla应助空古悠浪采纳,获得20
4秒前
射天狼完成签到,获得积分10
4秒前
清爽尔安发布了新的文献求助10
4秒前
6秒前
6秒前
顾矜应助GS11采纳,获得10
7秒前
SuperZzz完成签到,获得积分10
7秒前
李大伟发布了新的文献求助10
9秒前
贾克斯完成签到,获得积分20
9秒前
闾丘剑封发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
9秒前
李健应助hanleiharry1采纳,获得10
9秒前
10秒前
科研通AI2S应助Hey采纳,获得20
12秒前
爱笑若冰完成签到,获得积分10
12秒前
tomorrow完成签到 ,获得积分10
13秒前
14秒前
Rei完成签到 ,获得积分20
15秒前
科研通AI2S应助无所谓的啦采纳,获得10
15秒前
田様应助打我呀采纳,获得10
15秒前
16秒前
16秒前
科研狗发布了新的文献求助10
16秒前
yixiaolou发布了新的文献求助10
17秒前
李大伟完成签到,获得积分10
18秒前
慎独完成签到,获得积分10
18秒前
MchemG应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得30
19秒前
SYLH应助科研通管家采纳,获得30
19秒前
CHENG_2025应助科研通管家采纳,获得10
19秒前
小萌发布了新的文献求助10
19秒前
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174