Time-delayed reservoir computing based on spin-VCSEL: interplay between pump ellipticity and performance

垂直腔面发射激光器 油藏计算 材料科学 自旋(空气动力学) 计算机科学 物理 光电子学 光学 激光器 人工智能 循环神经网络 人工神经网络 热力学
作者
Tao Wang,Qing Fang,Hui‐Ming Wang,Yueyang Wang
出处
期刊:Journal of The Optical Society of America B-optical Physics [The Optical Society]
卷期号:41 (12): 2827-2827
标识
DOI:10.1364/josab.540025
摘要

Reservoir computing, a simplified recurrent neural network, can be implemented using a nonlinear system with delay feedback, known as time-delayed reservoir computing. In this paper, we explore two time-delayed reservoir computing schemes based on the fast dynamics of two polarization channels of a spin-VCSEL and investigate their prediction performance for the Mackey–Glass task. Our main focus is on understanding the impact of pump ellipticity on the prediction performance of the two reservoir computing systems, namely, RC X and RC Y . Through numerical simulation, we find that when the pump ellipticity ( P ) is less than 0.73, the prediction performance of RC Y outperforms RC X . However, beyond this threshold, the performance advantage shifts towards RC X . These findings shed light on the importance of considering pump ellipticity when designing and optimizing reservoir computing systems. Furthermore, we also investigate the influence of the ratio between the delay time and input period on the memory capacity of these systems. Interestingly, we observe that using a delay time of 2.8 times the input cycle enables better prediction performance and memory capacity. This choice not only provides an optimal trade-off between memory capacity and computing speed but also avoids the computational slowdown caused by excessively long delay times. In general, our study emphasizes the flexibility and tunability of the spin-VCSEL-based reservoir computing system. By easily adjusting the ellipticity and delay-time parameters, we can optimize the memory properties, resulting in significantly improved prediction performance. Our findings offer valuable insights for enhancing the performance of reservoir computing systems based on the ultrafast dynamics of spin-VCSELs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
1秒前
张霖达发布了新的文献求助10
2秒前
阳阳应助adelalady采纳,获得10
3秒前
李爱国应助dasheng采纳,获得10
3秒前
义气的银耳汤完成签到 ,获得积分10
3秒前
搜集达人应助fei采纳,获得10
4秒前
4秒前
jiangxy27发布了新的文献求助10
4秒前
希望天下0贩的0应助北城采纳,获得10
5秒前
852应助斯文跳跳糖采纳,获得10
6秒前
善学以致用应助小山隹采纳,获得10
7秒前
Ava应助槐序采纳,获得10
10秒前
11秒前
赘婿应助清新的静枫采纳,获得10
11秒前
stoneff612发布了新的文献求助10
11秒前
13秒前
bkagyin应助Leofar采纳,获得30
14秒前
情怀应助张霖达采纳,获得10
14秒前
15秒前
谁动了我钱包完成签到,获得积分20
17秒前
dhfify完成签到,获得积分10
17秒前
18秒前
苏苏苏完成签到,获得积分20
18秒前
上官若男应助chc123采纳,获得10
19秒前
20秒前
20秒前
dasheng发布了新的文献求助10
20秒前
隐形曼青应助尛瞐慶成采纳,获得10
21秒前
21秒前
传奇3应助小山隹采纳,获得10
23秒前
小绵羊发布了新的文献求助10
24秒前
24秒前
彭于晏应助renyun采纳,获得10
24秒前
25秒前
高锕666完成签到,获得积分10
28秒前
adelalady完成签到,获得积分10
29秒前
品如的文献应助cqnuly采纳,获得10
29秒前
寻雪发布了新的文献求助10
30秒前
胡子西瓜发布了新的文献求助10
30秒前
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412724
求助须知:如何正确求助?哪些是违规求助? 3015318
关于积分的说明 8869744
捐赠科研通 2703064
什么是DOI,文献DOI怎么找? 1482010
科研通“疑难数据库(出版商)”最低求助积分说明 685108
邀请新用户注册赠送积分活动 679781