A Multi Modal Geologist Copilot GeoCopilot: Generative AI with Reality Augmented Generation for Automated and Explained Lithology Interpretation While Drilling

钻探 口译(哲学) 地质学家 岩性 情态动词 计算机科学 增强现实 演习 生成语法 地质学 人工智能 人机交互 工程类 岩石学 机械工程 程序设计语言 古生物学 化学 高分子化学
作者
Marcos Vinícius Gomes Jacinto,L. H. L. de Oliveira,T. C. Rodrigues,Gabriele Caires De Medeiros,David R. Medeiros,M. A. Silva,Leonardo Carvalho de Montalvão,Marco González,Rafael Valladares de Almeida
标识
DOI:10.2118/221864-ms
摘要

In well drilling operations, the rapid interpretation of geological data is crucial for optimizing drilling processes, ensuring safety, and understanding the characteristics of geological formations and reservoir fluids (Blue et al., 2019). Traditionally, these analyses depend on cuttings description, a manual and non-deterministic procedure carried out by teams of geologists in the field, combined with the analysis of drilling parameters and logging-while-drilling (LWD) data when available. However, characterizing cuttings samples to describe well lithology is both time-consuming and prone to human bias at various stages, from sample preparation to the actual description. Using it poses a challenge both to the traditional method used while drilling, as well as to incorporating this kind of information into any automated or semi-automated workflow that uses Artificial Intelligence techniques. Recent advancements in Machine Learning (ML) and Artificial Intelligence (AI) have shown promise in enhancing data reliability and real-time lithology prediction. The early explorations by Rogers et al. (1992), Benaouda et al. (1999), and Wang and Zhang (2008) laid the groundwork, utilizing well-log data to develop predictive models. As the field advanced, more refined ML models for lithofacies and permeability prediction emerged, employing techniques like artificial neural networks (ANN) and support vector machines (SVM). Researchers such as Mohamed et al. (2019) and Nanjo and Tanaka (2019, 2020) applied ML models and image analysis methods to address real-time lithology prediction during drilling operations. Recently, Khalifa et al. (2023) achieved a remarkable accuracy of 95% in identifying some lithologies with an ML-base approach, demonstrating significant advancements in real-time ML workflows for lithology prediction. However, the new advances of AI, more specifically in the field of Generative AI (GenAI) and Large Language Models (LLMs) have not yet been explored in such applications. And although GenAI faces its own set of challenges such as data scarcity, interpretability issues, scalability, and trustworthiness, it might offer a new frontier for further enhancing lithology prediction and assist in optimizing drilling operations. Therefore, the purpose of this paper is to advance the field by validating a methodology that integrates GenAI, LLMs, with geological data for assisting in the description of cuttings samples and interpreting lithology while drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好发布了新的文献求助10
1秒前
852应助oh采纳,获得10
2秒前
黑妖发布了新的文献求助10
2秒前
ZSWAA发布了新的文献求助10
3秒前
yyy关注了科研通微信公众号
4秒前
畅快的眼神完成签到 ,获得积分10
4秒前
田様应助千里采纳,获得10
4秒前
大个应助顺心冰巧采纳,获得10
5秒前
Liu完成签到,获得积分10
7秒前
烟花应助ZSWAA采纳,获得10
7秒前
7秒前
楠木南完成签到,获得积分10
8秒前
9秒前
Orange应助倪莺媛采纳,获得10
9秒前
隐形迎松完成签到 ,获得积分10
10秒前
Yqx发布了新的文献求助10
11秒前
SciGPT应助铠甲勇士采纳,获得10
12秒前
英姑应助Crystal采纳,获得10
14秒前
帅气的马里奥完成签到 ,获得积分10
14秒前
cm完成签到,获得积分10
15秒前
陈年人少熬夜完成签到 ,获得积分10
16秒前
ttt发布了新的文献求助10
16秒前
汉堡包应助小田采纳,获得10
17秒前
Akim应助黑妖采纳,获得10
17秒前
科研小白发布了新的文献求助10
19秒前
Yqx完成签到,获得积分10
20秒前
千里完成签到,获得积分20
21秒前
21秒前
qqq关闭了qqq文献求助
22秒前
Owen应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
英姑应助提拉米苏采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
玻玻应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
curtisness应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助Li采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870