A Multi Modal Geologist Copilot GeoCopilot: Generative AI with Reality Augmented Generation for Automated and Explained Lithology Interpretation While Drilling

钻探 口译(哲学) 地质学家 岩性 情态动词 计算机科学 增强现实 演习 生成语法 地质学 人工智能 人机交互 工程类 岩石学 机械工程 程序设计语言 古生物学 化学 高分子化学
作者
Marcos Vinícius Gomes Jacinto,L. H. L. de Oliveira,T. C. Rodrigues,Gabriele Caires De Medeiros,David R. Medeiros,M. A. Silva,Leonardo Carvalho de Montalvão,Marco González,Rafael Valladares de Almeida
标识
DOI:10.2118/221864-ms
摘要

In well drilling operations, the rapid interpretation of geological data is crucial for optimizing drilling processes, ensuring safety, and understanding the characteristics of geological formations and reservoir fluids (Blue et al., 2019). Traditionally, these analyses depend on cuttings description, a manual and non-deterministic procedure carried out by teams of geologists in the field, combined with the analysis of drilling parameters and logging-while-drilling (LWD) data when available. However, characterizing cuttings samples to describe well lithology is both time-consuming and prone to human bias at various stages, from sample preparation to the actual description. Using it poses a challenge both to the traditional method used while drilling, as well as to incorporating this kind of information into any automated or semi-automated workflow that uses Artificial Intelligence techniques. Recent advancements in Machine Learning (ML) and Artificial Intelligence (AI) have shown promise in enhancing data reliability and real-time lithology prediction. The early explorations by Rogers et al. (1992), Benaouda et al. (1999), and Wang and Zhang (2008) laid the groundwork, utilizing well-log data to develop predictive models. As the field advanced, more refined ML models for lithofacies and permeability prediction emerged, employing techniques like artificial neural networks (ANN) and support vector machines (SVM). Researchers such as Mohamed et al. (2019) and Nanjo and Tanaka (2019, 2020) applied ML models and image analysis methods to address real-time lithology prediction during drilling operations. Recently, Khalifa et al. (2023) achieved a remarkable accuracy of 95% in identifying some lithologies with an ML-base approach, demonstrating significant advancements in real-time ML workflows for lithology prediction. However, the new advances of AI, more specifically in the field of Generative AI (GenAI) and Large Language Models (LLMs) have not yet been explored in such applications. And although GenAI faces its own set of challenges such as data scarcity, interpretability issues, scalability, and trustworthiness, it might offer a new frontier for further enhancing lithology prediction and assist in optimizing drilling operations. Therefore, the purpose of this paper is to advance the field by validating a methodology that integrates GenAI, LLMs, with geological data for assisting in the description of cuttings samples and interpreting lithology while drilling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nini完成签到 ,获得积分10
1秒前
506407完成签到,获得积分10
2秒前
蓝天发布了新的文献求助10
3秒前
科研通AI6应助加油采纳,获得10
4秒前
kroll发布了新的文献求助10
4秒前
LL完成签到 ,获得积分10
5秒前
6秒前
6秒前
Carolina完成签到,获得积分10
7秒前
繁荣的立果完成签到,获得积分10
12秒前
危机的阁发布了新的文献求助10
13秒前
晓汁完成签到 ,获得积分10
16秒前
16秒前
共享精神应助白天乐夜雨采纳,获得10
17秒前
小巧寻桃发布了新的文献求助10
21秒前
交大市长完成签到,获得积分10
22秒前
今后应助刘芋叶采纳,获得10
24秒前
香蕉诗蕊应助加油采纳,获得10
25秒前
琦琦完成签到 ,获得积分10
25秒前
踏实的兔子完成签到 ,获得积分10
26秒前
搜集达人应助LHR采纳,获得10
30秒前
默默善愁发布了新的文献求助10
30秒前
凌风完成签到,获得积分10
32秒前
李嗯呐发布了新的文献求助10
32秒前
32秒前
多年以后完成签到,获得积分10
37秒前
科研通AI6应助超级瑶瑶采纳,获得10
37秒前
kuikichu完成签到,获得积分10
37秒前
黄黄黄发布了新的文献求助30
37秒前
39秒前
40秒前
文艺宛海发布了新的文献求助10
40秒前
时不我待完成签到,获得积分10
40秒前
CipherSage应助默默善愁采纳,获得10
41秒前
kroll完成签到,获得积分10
42秒前
olekravchenko应助科研通管家采纳,获得10
43秒前
田様应助科研通管家采纳,获得10
43秒前
在水一方应助科研通管家采纳,获得10
43秒前
无情山水应助科研通管家采纳,获得10
44秒前
Lucas应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055