清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Multi Modal Geologist Copilot GeoCopilot: Generative AI with Reality Augmented Generation for Automated and Explained Lithology Interpretation While Drilling

钻探 口译(哲学) 地质学家 岩性 情态动词 计算机科学 增强现实 演习 生成语法 地质学 人工智能 人机交互 工程类 岩石学 机械工程 程序设计语言 古生物学 化学 高分子化学
作者
Marcos Vinícius Gomes Jacinto,L. H. L. de Oliveira,T. C. Rodrigues,Gabriele Caires De Medeiros,David R. Medeiros,M. A. Silva,Leonardo Carvalho de Montalvão,Marco González,Rafael Valladares de Almeida
标识
DOI:10.2118/221864-ms
摘要

In well drilling operations, the rapid interpretation of geological data is crucial for optimizing drilling processes, ensuring safety, and understanding the characteristics of geological formations and reservoir fluids (Blue et al., 2019). Traditionally, these analyses depend on cuttings description, a manual and non-deterministic procedure carried out by teams of geologists in the field, combined with the analysis of drilling parameters and logging-while-drilling (LWD) data when available. However, characterizing cuttings samples to describe well lithology is both time-consuming and prone to human bias at various stages, from sample preparation to the actual description. Using it poses a challenge both to the traditional method used while drilling, as well as to incorporating this kind of information into any automated or semi-automated workflow that uses Artificial Intelligence techniques. Recent advancements in Machine Learning (ML) and Artificial Intelligence (AI) have shown promise in enhancing data reliability and real-time lithology prediction. The early explorations by Rogers et al. (1992), Benaouda et al. (1999), and Wang and Zhang (2008) laid the groundwork, utilizing well-log data to develop predictive models. As the field advanced, more refined ML models for lithofacies and permeability prediction emerged, employing techniques like artificial neural networks (ANN) and support vector machines (SVM). Researchers such as Mohamed et al. (2019) and Nanjo and Tanaka (2019, 2020) applied ML models and image analysis methods to address real-time lithology prediction during drilling operations. Recently, Khalifa et al. (2023) achieved a remarkable accuracy of 95% in identifying some lithologies with an ML-base approach, demonstrating significant advancements in real-time ML workflows for lithology prediction. However, the new advances of AI, more specifically in the field of Generative AI (GenAI) and Large Language Models (LLMs) have not yet been explored in such applications. And although GenAI faces its own set of challenges such as data scarcity, interpretability issues, scalability, and trustworthiness, it might offer a new frontier for further enhancing lithology prediction and assist in optimizing drilling operations. Therefore, the purpose of this paper is to advance the field by validating a methodology that integrates GenAI, LLMs, with geological data for assisting in the description of cuttings samples and interpreting lithology while drilling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Yjj发布了新的文献求助10
6秒前
可夫司机完成签到 ,获得积分10
24秒前
田田完成签到 ,获得积分10
28秒前
无花果应助科研通管家采纳,获得10
29秒前
包容的剑完成签到 ,获得积分10
35秒前
Liufgui应助乏味采纳,获得30
1分钟前
量子星尘发布了新的文献求助30
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
舒适以松发布了新的文献求助10
1分钟前
2分钟前
饱满的新之完成签到 ,获得积分10
2分钟前
clock完成签到 ,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
偷得浮生半日闲完成签到,获得积分10
2分钟前
2分钟前
球球应助Yjj采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
英俊的铭应助舒适以松采纳,获得10
2分钟前
11完成签到 ,获得积分10
2分钟前
2分钟前
舒适以松发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
脑洞疼应助舒适以松采纳,获得10
3分钟前
乏味发布了新的文献求助30
3分钟前
Yjj完成签到,获得积分20
3分钟前
张wx_100完成签到,获得积分10
3分钟前
laiba完成签到,获得积分10
3分钟前
河豚不擦鞋完成签到 ,获得积分10
3分钟前
我是老大应助乏味采纳,获得30
3分钟前
Sunny完成签到,获得积分10
3分钟前
4分钟前
4分钟前
乏味发布了新的文献求助30
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000