亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Do New Words Propagate Like Memes? An Internet Usage-Based Two-Stage Model of the Life Cycle of Neologisms

新词 语言学 阶段(地层学) 互联网 计算机科学 历史 心理学 万维网 哲学 生物 古生物学
作者
Menghan Jiang,Kathleen Ahrens,Xiangying Shen,Sophia Yat Mei Lee,Chu‐Ren Huang
出处
期刊:Journal of Chinese Linguistics [The Chinese University of Hong Kong]
标识
DOI:10.1353/jcl.2017.a944378
摘要

Neologisms reflect new ideas or new concepts in our life and play an important role in cultural transmission and the vitality of human language. The explosion of neologisms, especially in the past two decades, can also be ascribed to the popularity and accessibility of digital content and social media. In this paper, we focus on the issue of how neologisms arise by looking at the trajectory of developments in terms of their usage over time, i.e., their life cycle. By studying neologisms in vivo, instead of as fait accompli, we hope to better understand the nature of neologisms and to enable better prediction and earlier inclusion of neologisms. To achieve this goal, we examine the memetic model for the life cycle of neologisms and compare it with a recently studied epidemic model. We present a longitudinal modeling of the development of neologisms based on internet usage data aggregated from Google Trends, covering the 90 most influential Chinese neologisms from 2008–2016. Our study verifies that the memetic model can describe and predict the life cycle of the neologisms robustly for the early stages (i.e., the ascending stages) of its cycle, but not for its full life cycle, and crucially cannot predict the inflection point. We conclude that two models are needed for word propagation: a memetic model for the initial stages and an epidemic model for the latter stage, particularly the inflection point. This two-stage/two-model approach allows for neologisms to be more easily identified as potentially new words, as it is easier to write a program to automatically filter for emerging terms using a memetic model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dynamoo举报你可以帮我嘛求助涉嫌违规
1秒前
dao发布了新的文献求助10
2秒前
卢卢家兴发布了新的文献求助50
11秒前
TTRRCEB发布了新的文献求助10
1分钟前
GPTea应助科研通管家采纳,获得10
1分钟前
不信人间有白头完成签到 ,获得积分10
1分钟前
共享精神应助TTRRCEB采纳,获得10
1分钟前
2分钟前
排骨大王完成签到,获得积分10
2分钟前
2分钟前
2分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
TTRRCEB发布了新的文献求助10
3分钟前
沉默的小虾米完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
MchemG应助郗妫采纳,获得130
5分钟前
所所应助charly采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
uss完成签到,获得积分10
6分钟前
7分钟前
小飞猪完成签到,获得积分10
7分钟前
小飞猪发布了新的文献求助10
7分钟前
7分钟前
charly发布了新的文献求助10
7分钟前
Lucas应助charly采纳,获得10
8分钟前
zhaozhao完成签到,获得积分10
8分钟前
zhaozhao发布了新的文献求助200
9分钟前
TIDUS完成签到,获得积分10
9分钟前
a36380382完成签到,获得积分10
9分钟前
TIDUS完成签到,获得积分10
9分钟前
搜集达人应助hehe_733采纳,获得50
9分钟前
Ollm完成签到 ,获得积分10
9分钟前
郗妫完成签到,获得积分10
10分钟前
科研剧中人完成签到,获得积分10
10分钟前
Criminology34发布了新的文献求助30
10分钟前
酷波er应助科研通管家采纳,获得50
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910204
求助须知:如何正确求助?哪些是违规求助? 4186176
关于积分的说明 12999163
捐赠科研通 3953494
什么是DOI,文献DOI怎么找? 2167962
邀请新用户注册赠送积分活动 1186412
关于科研通互助平台的介绍 1093479