亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Do New Words Propagate Like Memes? An Internet Usage-Based Two-Stage Model of the Life Cycle of Neologisms

新词 语言学 阶段(地层学) 互联网 计算机科学 历史 心理学 万维网 哲学 生物 古生物学
作者
Menghan Jiang,Kathleen Ahrens,Xiangying Shen,Sophia Yat Mei Lee,Chu‐Ren Huang
出处
期刊:Journal of Chinese Linguistics
标识
DOI:10.1353/jcl.2017.a944378
摘要

Neologisms reflect new ideas or new concepts in our life and play an important role in cultural transmission and the vitality of human language. The explosion of neologisms, especially in the past two decades, can also be ascribed to the popularity and accessibility of digital content and social media. In this paper, we focus on the issue of how neologisms arise by looking at the trajectory of developments in terms of their usage over time, i.e., their life cycle. By studying neologisms in vivo, instead of as fait accompli, we hope to better understand the nature of neologisms and to enable better prediction and earlier inclusion of neologisms. To achieve this goal, we examine the memetic model for the life cycle of neologisms and compare it with a recently studied epidemic model. We present a longitudinal modeling of the development of neologisms based on internet usage data aggregated from Google Trends, covering the 90 most influential Chinese neologisms from 2008–2016. Our study verifies that the memetic model can describe and predict the life cycle of the neologisms robustly for the early stages (i.e., the ascending stages) of its cycle, but not for its full life cycle, and crucially cannot predict the inflection point. We conclude that two models are needed for word propagation: a memetic model for the initial stages and an epidemic model for the latter stage, particularly the inflection point. This two-stage/two-model approach allows for neologisms to be more easily identified as potentially new words, as it is easier to write a program to automatically filter for emerging terms using a memetic model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
orixero应助cghmfgh采纳,获得20
16秒前
GAC完成签到 ,获得积分10
18秒前
19秒前
CodeCraft应助可耐的问凝采纳,获得10
20秒前
25秒前
Bowman完成签到,获得积分10
26秒前
池寒完成签到 ,获得积分10
30秒前
lixuebin完成签到 ,获得积分10
31秒前
小马甲应助可耐的问凝采纳,获得10
32秒前
池寒1完成签到,获得积分10
38秒前
科研通AI5应助dc采纳,获得10
39秒前
41秒前
44秒前
可爱的函函应助cghmfgh采纳,获得20
45秒前
46秒前
47秒前
坚定盈发布了新的文献求助10
51秒前
51秒前
1分钟前
喜喜发布了新的文献求助10
1分钟前
池寒1发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Long发布了新的文献求助10
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
cghmfgh发布了新的文献求助20
1分钟前
Long完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
香蕉觅云应助Xiexi采纳,获得10
1分钟前
微光给微光的求助进行了留言
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
小飞完成签到 ,获得积分10
1分钟前
cghmfgh发布了新的文献求助20
1分钟前
2分钟前
Xiexi发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516364
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240108
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533192
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384