Do New Words Propagate Like Memes? An Internet Usage-Based Two-Stage Model of the Life Cycle of Neologisms

新词 语言学 阶段(地层学) 互联网 计算机科学 历史 心理学 万维网 哲学 生物 古生物学
作者
Menghan Jiang,Kathleen Ahrens,Xiangying Shen,Sophia Yat Mei Lee,Chu‐Ren Huang
出处
期刊:Journal of Chinese Linguistics [The Chinese University of Hong Kong]
标识
DOI:10.1353/jcl.2017.a944378
摘要

Neologisms reflect new ideas or new concepts in our life and play an important role in cultural transmission and the vitality of human language. The explosion of neologisms, especially in the past two decades, can also be ascribed to the popularity and accessibility of digital content and social media. In this paper, we focus on the issue of how neologisms arise by looking at the trajectory of developments in terms of their usage over time, i.e., their life cycle. By studying neologisms in vivo, instead of as fait accompli, we hope to better understand the nature of neologisms and to enable better prediction and earlier inclusion of neologisms. To achieve this goal, we examine the memetic model for the life cycle of neologisms and compare it with a recently studied epidemic model. We present a longitudinal modeling of the development of neologisms based on internet usage data aggregated from Google Trends, covering the 90 most influential Chinese neologisms from 2008–2016. Our study verifies that the memetic model can describe and predict the life cycle of the neologisms robustly for the early stages (i.e., the ascending stages) of its cycle, but not for its full life cycle, and crucially cannot predict the inflection point. We conclude that two models are needed for word propagation: a memetic model for the initial stages and an epidemic model for the latter stage, particularly the inflection point. This two-stage/two-model approach allows for neologisms to be more easily identified as potentially new words, as it is easier to write a program to automatically filter for emerging terms using a memetic model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许方恺发布了新的文献求助10
1秒前
Jimmy完成签到,获得积分10
1秒前
1秒前
1秒前
yaochuan发布了新的文献求助10
2秒前
sdniuidifod发布了新的文献求助50
2秒前
Jimmy发布了新的文献求助10
3秒前
lvlv完成签到,获得积分10
3秒前
小叶完成签到,获得积分10
3秒前
如你所liao完成签到,获得积分10
3秒前
4秒前
doctor fighting完成签到,获得积分10
4秒前
wdy111应助飞0802采纳,获得20
4秒前
4秒前
5秒前
英俊的铭应助ccccccp采纳,获得10
5秒前
5秒前
年年完成签到,获得积分10
5秒前
innocent完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Zhanghh87完成签到,获得积分10
6秒前
yaochuan完成签到,获得积分10
7秒前
8秒前
Ava应助qq16采纳,获得20
8秒前
西瓜ovo完成签到,获得积分10
8秒前
ninicwang完成签到,获得积分10
9秒前
明小丽发布了新的文献求助20
9秒前
火龙果发布了新的文献求助10
10秒前
11秒前
小雯完成签到 ,获得积分10
11秒前
芝士发布了新的文献求助10
11秒前
11秒前
勤奋幻柏发布了新的文献求助10
11秒前
12秒前
panjunlu发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600