替代模型
稳健性(进化)
克里金
数学
非线性系统
加权
支持向量机
算法
径向基函数
聚类分析
数学优化
刀切重采样
重采样
数据点
计算机科学
人工智能
统计
人工神经网络
物理
量子力学
医学
生物化学
化学
放射科
估计员
基因
作者
Amir Parnianifard,Abhishek Sharma,Sushank Chaudhary
标识
DOI:10.1080/00949655.2024.2439488
摘要
A data-driven surrogate mimics the behavior of a black-box simulation model using selected input-output data points. Highly nonlinear models challenge many surrogate techniques in engineering design. This study proposes a reliable surrogate for training small-scale problems (two or three input variables). A combination of local and semi-global interpolators is introduced to approximate responses for new sample points in the design space. The local predictor uses a linear combination of two adjacent points, while the semi-global predictor employs K-means clustering, averaging samples in each cluster, and weighting clusters based on Euclidean distances. The trade-off between predictors is optimized using jackknife resampling error minimized via Genetic Algorithm (GA). Performance comparisons with Kriging, Radial Basis Function (RBF), and Support Vector Machine (SVM) confirm the proposed surrogate's accuracy and robustness using five benchmark functions and two engineering problems. Results demonstrate superior interpolation of nonlinear functions with reduced error and improved robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI