Gastric ultrasound: Enhancing preoperative risk assessment and patient safety

医学 围手术期 患者安全 风险评估 气道 胃排空 重症监护医学 外科 医疗保健 内科学 计算机科学 计算机安全 经济 经济增长
作者
Luke Chan
出处
期刊:Journal of perioperative practice [SAGE]
标识
DOI:10.1177/17504589241302220
摘要

Perioperative pulmonary aspiration is a critical complication linked to significant morbidity and mortality, particularly in high-risk populations such as patients with diabetes, obesity, gastroparesis, or those using Glucagon-Like-Peptide-1 receptor agonists (GLP-1 RAs). Standard fasting protocols may not be appropriate for these patients, as they have increased propensity of delayed gastric emptying, hence increasing the complex of the preoperative risk assessment. Gastric ultrasound (GUS) provides a non-invasive, reliable method for assessing gastric content and volume, enabling anaesthesia professionals to make informed decisions regarding aspiration risk, airway management, and surgical scheduling. By identifying patients with elevated gastric volumes, GUS has the potential to reduce aspiration-related complications and unnecessary surgical cancellations.Despite its clear clinical benefits, the adoption of GUS in anaesthetic practice remains limited, primarily due to the technical skill required for accurate quantitative assessments. Qualitative evaluations of gastric contents are simpler for beginners, but precise volume measurements, essential for risk stratification, demand more extensive training. Recent studies demonstrate that with structured training, even novice operators can achieve high diagnostic accuracy. Artificial intelligence (AI) can further enhance GUS utility by automating volume calculations, guiding probe placement, and providing real-time feedback. These capabilities could significantly shorten the learning curve and improve consistency in risk assessment.Incorporating GUS and AI tools into anaesthesia training can overcome adoption barriers, enabling clinicians to more accurately assess aspiration risk and enhance patient safety in perioperative care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jin_0124应助jie采纳,获得10
刚刚
cocolu应助123采纳,获得10
1秒前
CodeCraft应助吹啊采纳,获得10
1秒前
呀呀呀完成签到 ,获得积分10
1秒前
wangzh发布了新的文献求助10
1秒前
2秒前
Akim应助浙江嘉兴采纳,获得10
2秒前
dong完成签到,获得积分20
3秒前
情怀应助嘻嘻嘻采纳,获得10
3秒前
橙熟完成签到,获得积分10
3秒前
FERN0826发布了新的文献求助10
3秒前
CipherSage应助漂泊1991采纳,获得10
4秒前
orixero应助wenbin采纳,获得10
5秒前
youcclucky完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
pluto应助流年采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助大观天下采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
北赊发布了新的文献求助10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得20
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
方赫然应助小向采纳,获得10
6秒前
6秒前
博修发布了新的文献求助10
7秒前
彤彤发布了新的文献求助10
7秒前
7秒前
7秒前
CodeCraft应助合适嘉熙采纳,获得10
7秒前
7秒前
dong发布了新的文献求助10
7秒前
隐形曼青应助瑾玉采纳,获得10
8秒前
研友_Lpawrn发布了新的文献求助10
9秒前
yan123发布了新的文献求助10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296188
求助须知:如何正确求助?哪些是违规求助? 2932140
关于积分的说明 8455045
捐赠科研通 2604586
什么是DOI,文献DOI怎么找? 1421872
科研通“疑难数据库(出版商)”最低求助积分说明 661240
邀请新用户注册赠送积分活动 644182