MBE-YOLOv8: Enhancing Building Crack Detection with an Advanced YOLOv8 Framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Archy发布了新的文献求助10
1秒前
Upup发布了新的文献求助200
2秒前
酷酷学完成签到,获得积分10
3秒前
创新发布了新的文献求助10
5秒前
文文发布了新的文献求助10
6秒前
蓝桉完成签到,获得积分10
6秒前
小小苏荷发布了新的文献求助10
7秒前
脑洞疼应助zjx5591采纳,获得10
8秒前
10秒前
Stroeve发布了新的文献求助20
11秒前
Owen应助阿甲采纳,获得10
11秒前
你鹅朵龙嘛完成签到 ,获得积分10
11秒前
细心的梦芝完成签到,获得积分10
12秒前
12秒前
小蘑菇应助酷酷学采纳,获得10
13秒前
林子完成签到,获得积分10
13秒前
憨憨发布了新的文献求助10
14秒前
欣喜的素完成签到,获得积分20
14秒前
打打应助小小苏荷采纳,获得10
14秒前
CodeCraft应助louiselong采纳,获得10
17秒前
欣喜的素发布了新的文献求助10
17秒前
17秒前
Stroeve完成签到,获得积分10
18秒前
SHAO应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
李健应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
zho应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
SHAO应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545