MBE-YOLOv8: enhancing building crack detection with an advanced YOLOv8 framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005 被引量:2
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanqyq发布了新的文献求助10
2秒前
无名发布了新的文献求助10
2秒前
甜野发布了新的文献求助10
2秒前
七星茶发布了新的文献求助30
2秒前
我的纸飞机完成签到,获得积分10
3秒前
Susanx发布了新的文献求助10
3秒前
龙仔完成签到 ,获得积分10
4秒前
艺术家完成签到,获得积分10
4秒前
收手吧大哥应助hjygzv采纳,获得20
8秒前
糊糊完成签到 ,获得积分0
9秒前
动听的凌旋应助风趣烤鸡采纳,获得10
10秒前
yznfly应助执着谷兰采纳,获得20
10秒前
传奇3应助谈伟采纳,获得10
10秒前
11秒前
干净寻冬应助无名采纳,获得10
11秒前
12秒前
Owen应助肖肖采纳,获得10
14秒前
斗破发布了新的文献求助10
14秒前
18秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
19秒前
和谐青柏应助科研通管家采纳,获得10
19秒前
冰滋滋应助科研通管家采纳,获得10
19秒前
zhonglv7应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
Mida应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
海蓝云天应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
sjh应助科研通管家采纳,获得10
19秒前
和谐青柏应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
zhonglv7应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704