已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MBE-YOLOv8: Enhancing Building Crack Detection with an Advanced YOLOv8 Framework

计算机科学 特征(语言学) 适应性 假阳性悖论 模式识别(心理学) 人工智能 数据挖掘 可靠性工程 工程类 生态学 哲学 语言学 生物
作者
Zeyu Zhang,Zhengrong Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Abstract: Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the Multi-Dimensional Collaborative Attention (MCA) mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The Efficient Channel Attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model's adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R, and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助gower1003采纳,获得10
2秒前
利奈唑胺完成签到,获得积分10
5秒前
可爱的函函应助2323采纳,获得10
6秒前
colin发布了新的文献求助10
6秒前
7秒前
WZ发布了新的文献求助10
8秒前
shinysparrow应助橙c美式采纳,获得200
9秒前
10秒前
ann发布了新的文献求助10
10秒前
万能图书馆应助小王子采纳,获得10
12秒前
12秒前
小蘑菇应助LZHWSND采纳,获得10
12秒前
cctv18应助完美的海秋采纳,获得10
16秒前
wdnyrrc完成签到,获得积分10
17秒前
17秒前
开心之王发布了新的文献求助10
18秒前
19秒前
19秒前
要减肥金针菇完成签到,获得积分10
20秒前
23秒前
121314wld发布了新的文献求助10
23秒前
23秒前
colin完成签到,获得积分10
25秒前
25秒前
景从云发布了新的文献求助10
25秒前
wawaeryu完成签到,获得积分10
25秒前
小蘑菇应助开心之王采纳,获得10
26秒前
无花果应助小豪采纳,获得10
27秒前
科研通AI2S应助橙c美式采纳,获得10
28秒前
zimo发布了新的文献求助10
29秒前
121314wld完成签到,获得积分10
29秒前
蛋泥完成签到,获得积分10
30秒前
cctv18应助完美的海秋采纳,获得10
31秒前
32秒前
清秀不可发布了新的文献求助10
33秒前
samtol完成签到,获得积分10
34秒前
大个应助直率的世平采纳,获得10
34秒前
科研通AI2S应助zimo采纳,获得30
36秒前
37秒前
慕青应助健忘沛文采纳,获得10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244558
求助须知:如何正确求助?哪些是违规求助? 2888246
关于积分的说明 8252047
捐赠科研通 2556656
什么是DOI,文献DOI怎么找? 1385132
科研通“疑难数据库(出版商)”最低求助积分说明 650025
邀请新用户注册赠送积分活动 626193