MBE-YOLOv8: enhancing building crack detection with an advanced YOLOv8 framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005 被引量:2
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灯座发布了新的文献求助10
刚刚
面面完成签到,获得积分10
刚刚
刚刚
CAIWEN完成签到,获得积分10
1秒前
1秒前
CJZOU完成签到,获得积分10
1秒前
orixero应助小太阳采纳,获得10
2秒前
2秒前
Jonathan完成签到,获得积分10
2秒前
dddd完成签到,获得积分10
2秒前
hsn完成签到,获得积分10
2秒前
sansronds完成签到,获得积分10
3秒前
Lze发布了新的文献求助20
3秒前
天涯发布了新的文献求助10
4秒前
奋斗的苹果完成签到,获得积分10
4秒前
大花花完成签到,获得积分10
4秒前
脑洞疼应助呆萌幼晴采纳,获得10
4秒前
4秒前
刘辞忧完成签到 ,获得积分10
4秒前
SATone完成签到,获得积分10
5秒前
5秒前
呼呼完成签到,获得积分10
5秒前
5秒前
Coarrb完成签到,获得积分10
5秒前
ylf发布了新的文献求助10
6秒前
胡小溪完成签到,获得积分10
6秒前
温暖的冬天完成签到,获得积分10
6秒前
从容雅柏完成签到,获得积分10
6秒前
JamesPei应助Lihuining采纳,获得10
6秒前
zy关注了科研通微信公众号
6秒前
大盘菜应助灯座采纳,获得10
7秒前
毅可爱完成签到,获得积分10
7秒前
充电宝应助灯座采纳,获得10
7秒前
无颜猪发布了新的文献求助10
7秒前
桐桐应助guochenggong采纳,获得10
8秒前
时冬冬应助虚心的静枫采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
怡然花卷完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017