MBE-YOLOv8: enhancing building crack detection with an advanced YOLOv8 framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005 被引量:2
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星期八完成签到,获得积分10
1秒前
领导范儿应助天天采纳,获得20
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
羽翼应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
呼延半邪完成签到 ,获得积分10
5秒前
思源应助dawncat采纳,获得10
5秒前
5秒前
5秒前
俊逸半烟发布了新的文献求助10
5秒前
小二郎应助醉意拥桃枝采纳,获得10
7秒前
7秒前
小蘑菇应助晨澜采纳,获得30
7秒前
科研通AI6应助123采纳,获得10
7秒前
444完成签到,获得积分10
7秒前
sam0522发布了新的文献求助10
7秒前
无极微光应助hhhhh采纳,获得20
10秒前
10秒前
11秒前
橙子发布了新的文献求助10
11秒前
天天完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
无极微光应助李卓航采纳,获得20
12秒前
Liang发布了新的文献求助10
12秒前
华仔应助123rgk采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656560
求助须知:如何正确求助?哪些是违规求助? 4804154
关于积分的说明 15076185
捐赠科研通 4814847
什么是DOI,文献DOI怎么找? 2576000
邀请新用户注册赠送积分活动 1531353
关于科研通互助平台的介绍 1489900