MBE-YOLOv8: enhancing building crack detection with an advanced YOLOv8 framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005 被引量:2
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木木发布了新的文献求助10
1秒前
D_完成签到,获得积分20
1秒前
蚕宝宝完成签到,获得积分10
4秒前
牛马完成签到,获得积分10
4秒前
在水一方应助D_采纳,获得10
5秒前
5秒前
alwry完成签到,获得积分10
6秒前
干净的沛蓝完成签到,获得积分10
7秒前
巧克力豆丁好好吃完成签到,获得积分10
8秒前
whc121完成签到,获得积分10
9秒前
小许会更好完成签到,获得积分10
9秒前
Orange应助零知识采纳,获得10
9秒前
无聊的三问完成签到,获得积分10
11秒前
sss完成签到,获得积分10
11秒前
鱼洞发布了新的文献求助10
11秒前
勤奋完成签到 ,获得积分10
12秒前
栗子完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
北极星完成签到 ,获得积分10
15秒前
活泼强炫完成签到,获得积分10
15秒前
jessie完成签到,获得积分10
15秒前
THEO完成签到,获得积分10
15秒前
16秒前
GB完成签到 ,获得积分10
16秒前
李浩然完成签到,获得积分10
16秒前
孤独的AD钙完成签到,获得积分10
17秒前
17秒前
科研CY完成签到 ,获得积分10
17秒前
夏xx完成签到 ,获得积分10
18秒前
cis2014完成签到,获得积分10
20秒前
phil完成签到,获得积分10
20秒前
22秒前
TANG发布了新的文献求助10
22秒前
23秒前
科研小老莫完成签到,获得积分20
23秒前
lzgy完成签到,获得积分10
24秒前
27秒前
阔达如柏完成签到,获得积分10
28秒前
细心的傥完成签到,获得积分10
29秒前
joleisalau发布了新的文献求助20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685826
关于积分的说明 14839777
捐赠科研通 4674981
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471124