清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MBE-YOLOv8: enhancing building crack detection with an advanced YOLOv8 framework

计算机科学 材料科学 建筑工程 工程类
作者
Zhen Zhang,Z.-Y. Hu,Kexin Chen,Qi Zhou,Hongxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026005-026005 被引量:2
标识
DOI:10.1088/1361-6501/ad9e1c
摘要

Abstract Buildings, over prolonged periods, are susceptible to developing various types of cracks, which are often small and exhibit low contrast, leading to challenges in accurate detection. Missed detections and false positives due to these characteristics can result in delayed repairs, thereby compromising structural integrity and safety. Therefore, real-time detection of building cracks is essential to maintain the longevity and safety of infrastructures. In response to these challenges, we present an optimized version of the YOLOv8 model, referred to as MBE-YOLOv8, designed specifically for building crack detection. The core enhancement involves restructuring the backbone of YOLOv8 with the integration of the multi-dimensional collaborative attention mechanism, significantly improving feature interrelationships and the extraction capabilities of the backbone network. Additionally, we introduced a Weighted Feature Fusion Network (BiFPN) and developed a novel BiFPN-L structure to enhance feature fusion and detection accuracy, particularly for small targets. The efficient channel attention (ECA) mechanism was also incorporated into the model’s neck, leading to the design of a new EC2f structure that improves the model’s adaptability to scale variations and overall feature extraction efficiency. A comparative analysis with the original YOLOv8 model demonstrated that MBE-YOLOv8 achieved performance improvements with P, R , and mAP@0.5 values of 78.6%, 67.0%, and 73.4%, respectively. These figures represent increases of 4.8, 3.8, and 4.1 percentage points compared to the previous version of the YOLOv8 model. This advancement has significantly bolstered the capability to detect cracks in buildings. Furthermore, the enhanced model preserves a compact size of 3.0 M while sustaining a high frame rate (FPS), rendering it highly deployable for applications related to crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋完成签到 ,获得积分10
10秒前
LELE完成签到 ,获得积分10
22秒前
26秒前
宇文雨文完成签到 ,获得积分10
31秒前
Dongjie发布了新的文献求助10
33秒前
热情薯片完成签到,获得积分10
33秒前
33秒前
nojego发布了新的文献求助10
39秒前
39秒前
48秒前
hmhu完成签到,获得积分10
48秒前
hmhu发布了新的文献求助10
51秒前
59秒前
幽默滑板完成签到,获得积分10
1分钟前
陳.发布了新的文献求助10
1分钟前
你才是小哭包完成签到 ,获得积分10
1分钟前
wangzhenghua完成签到 ,获得积分10
1分钟前
外向钢铁侠完成签到,获得积分20
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
汤如冬完成签到 ,获得积分20
1分钟前
1分钟前
氕氘氚完成签到 ,获得积分10
1分钟前
情怀应助外向钢铁侠采纳,获得10
1分钟前
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
Akiii_完成签到,获得积分10
2分钟前
zx完成签到 ,获得积分10
2分钟前
2分钟前
智慧金刚完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
俊逸的香萱完成签到 ,获得积分10
2分钟前
小g完成签到,获得积分10
2分钟前
古今奇观完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
忒寒碜完成签到,获得积分10
2分钟前
3分钟前
yuan0320发布了新的文献求助10
3分钟前
ninini完成签到 ,获得积分10
3分钟前
kkk完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645003
求助须知:如何正确求助?哪些是违规求助? 4767024
关于积分的说明 15026102
捐赠科研通 4803370
什么是DOI,文献DOI怎么找? 2568275
邀请新用户注册赠送积分活动 1525669
关于科研通互助平台的介绍 1485222