CHILDHOOD ROOTS OF FRAILTY: MACHINE LEARNING INSIGHTS INTO HEALTH INEQUALITY IN LATER LIFE

不平等 老年学 生命历程法 心理学 计算机科学 发展心理学 医学 数学 数学分析
作者
Shutong Huo,Thomas M. Gill,Xi Chen,Derek Feng
出处
期刊:Innovation in Aging [Oxford University Press]
卷期号:8 (Supplement_1): 185-185
标识
DOI:10.1093/geroni/igae098.0598
摘要

Abstract This study investigates the impact of childhood circumstances on health inequality in later life, with a particular emphasis on frailty among older adults in the United States, highlighting the significance of early life historical and social factors. We employed data from the Health and Retirement Study (HRS), incorporating the 2012, 2014, 2016, and 2018 waves along with the 2015 Life History Mail Survey (LHMS). Using innovative conditional inference trees and forests, we evaluated 43 distinct childhood factors and their contribution to the Inequality of Opportunity (IOP) in health outcomes. The circumstances in both countries can be divided into seven domains: 1) war or economic crisis at birth; 2) regional and urban/rural status at birth; 3) family SES in childhood; 4) parental health status and health behaviors in childhood; 5) health and nutritional status in childhood; 6) relationship with parents in childhood; 7) friendship in childhood. We found that key early-life predictors identified include experiencing the Great Depression, adverse childhood events, socioeconomic status, and access to educational resources, all of which play critical roles in determining frailty in older adults. The machine learning models, particularly conditional inference forests, significantly outperform traditional analytical methods in predicting health inequality, with the best out-of-sample performance. The findings demonstrate the importance of early-life circumstances in shaping later health outcomes and stress the early-life interventions for health equity in aging societies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cml发布了新的文献求助10
刚刚
英姑应助yundanli采纳,获得10
刚刚
田様应助愉快书琴采纳,获得10
刚刚
桐桐应助Jack采纳,获得10
刚刚
热情礼貌一问三不知完成签到 ,获得积分10
2秒前
好的呢完成签到,获得积分10
3秒前
xz发布了新的文献求助10
4秒前
廖思巧发布了新的文献求助10
5秒前
5秒前
5秒前
无花果应助Condor采纳,获得10
5秒前
科研通AI6.1应助Bo采纳,获得10
6秒前
7秒前
9秒前
9秒前
852应助pamela采纳,获得10
10秒前
我爱科研完成签到,获得积分10
10秒前
11秒前
Ssr发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
cml完成签到,获得积分20
13秒前
gggghhhh完成签到 ,获得积分10
13秒前
机灵水卉发布了新的文献求助10
13秒前
zifeimo发布了新的文献求助10
13秒前
Redemption发布了新的文献求助10
14秒前
Ava应助仁爱行云采纳,获得10
14秒前
14秒前
16秒前
希望天下0贩的0应助念一采纳,获得10
16秒前
16秒前
ldk完成签到,获得积分10
16秒前
为为发布了新的文献求助10
16秒前
18秒前
20秒前
Auralis完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735678
求助须知:如何正确求助?哪些是违规求助? 5361982
关于积分的说明 15330919
捐赠科研通 4879862
什么是DOI,文献DOI怎么找? 2622363
邀请新用户注册赠送积分活动 1571343
关于科研通互助平台的介绍 1528175