已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CHILDHOOD ROOTS OF FRAILTY: MACHINE LEARNING INSIGHTS INTO HEALTH INEQUALITY IN LATER LIFE

不平等 老年学 生命历程法 心理学 计算机科学 发展心理学 医学 数学 数学分析
作者
Shutong Huo,Thomas M. Gill,Xi Chen,Derek Feng
出处
期刊:Innovation in Aging [Oxford University Press]
卷期号:8 (Supplement_1): 185-185
标识
DOI:10.1093/geroni/igae098.0598
摘要

Abstract This study investigates the impact of childhood circumstances on health inequality in later life, with a particular emphasis on frailty among older adults in the United States, highlighting the significance of early life historical and social factors. We employed data from the Health and Retirement Study (HRS), incorporating the 2012, 2014, 2016, and 2018 waves along with the 2015 Life History Mail Survey (LHMS). Using innovative conditional inference trees and forests, we evaluated 43 distinct childhood factors and their contribution to the Inequality of Opportunity (IOP) in health outcomes. The circumstances in both countries can be divided into seven domains: 1) war or economic crisis at birth; 2) regional and urban/rural status at birth; 3) family SES in childhood; 4) parental health status and health behaviors in childhood; 5) health and nutritional status in childhood; 6) relationship with parents in childhood; 7) friendship in childhood. We found that key early-life predictors identified include experiencing the Great Depression, adverse childhood events, socioeconomic status, and access to educational resources, all of which play critical roles in determining frailty in older adults. The machine learning models, particularly conditional inference forests, significantly outperform traditional analytical methods in predicting health inequality, with the best out-of-sample performance. The findings demonstrate the importance of early-life circumstances in shaping later health outcomes and stress the early-life interventions for health equity in aging societies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
浪麻麻发布了新的文献求助10
1秒前
FashionBoy应助zzj采纳,获得10
1秒前
科研通AI6应助Tonia采纳,获得10
2秒前
情怀应助灵巧的十八采纳,获得10
2秒前
CiCi完成签到,获得积分10
3秒前
Trey发布了新的文献求助10
3秒前
3秒前
Renie完成签到 ,获得积分10
4秒前
5秒前
5秒前
希望天下0贩的0应助善逸采纳,获得10
5秒前
5秒前
绝不拖延完成签到,获得积分10
6秒前
6秒前
CiCi发布了新的文献求助10
6秒前
7秒前
7秒前
魔幻安南发布了新的文献求助10
8秒前
三分发布了新的文献求助10
8秒前
小蘑菇应助不吃蛋黄采纳,获得10
8秒前
小涛发布了新的文献求助10
9秒前
11秒前
PLT完成签到,获得积分10
11秒前
心灵美的翠芙完成签到,获得积分10
11秒前
12秒前
彭笑笑完成签到,获得积分20
12秒前
QXZ1发布了新的文献求助10
12秒前
七七七七完成签到 ,获得积分10
12秒前
隐形曼青应助染然苒冉采纳,获得10
13秒前
彬彬发布了新的文献求助10
14秒前
朱志伟发布了新的文献求助10
14秒前
15秒前
Orange应助Trey采纳,获得10
18秒前
white完成签到 ,获得积分10
18秒前
木子完成签到 ,获得积分10
19秒前
kentonchow应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733