CHILDHOOD ROOTS OF FRAILTY: MACHINE LEARNING INSIGHTS INTO HEALTH INEQUALITY IN LATER LIFE

不平等 老年学 生命历程法 心理学 计算机科学 发展心理学 医学 数学 数学分析
作者
Shutong Huo,Thomas M. Gill,Xi Chen,Derek Feng
出处
期刊:Innovation in Aging [Oxford University Press]
卷期号:8 (Supplement_1): 185-185
标识
DOI:10.1093/geroni/igae098.0598
摘要

Abstract This study investigates the impact of childhood circumstances on health inequality in later life, with a particular emphasis on frailty among older adults in the United States, highlighting the significance of early life historical and social factors. We employed data from the Health and Retirement Study (HRS), incorporating the 2012, 2014, 2016, and 2018 waves along with the 2015 Life History Mail Survey (LHMS). Using innovative conditional inference trees and forests, we evaluated 43 distinct childhood factors and their contribution to the Inequality of Opportunity (IOP) in health outcomes. The circumstances in both countries can be divided into seven domains: 1) war or economic crisis at birth; 2) regional and urban/rural status at birth; 3) family SES in childhood; 4) parental health status and health behaviors in childhood; 5) health and nutritional status in childhood; 6) relationship with parents in childhood; 7) friendship in childhood. We found that key early-life predictors identified include experiencing the Great Depression, adverse childhood events, socioeconomic status, and access to educational resources, all of which play critical roles in determining frailty in older adults. The machine learning models, particularly conditional inference forests, significantly outperform traditional analytical methods in predicting health inequality, with the best out-of-sample performance. The findings demonstrate the importance of early-life circumstances in shaping later health outcomes and stress the early-life interventions for health equity in aging societies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江月年发布了新的文献求助10
刚刚
250发布了新的文献求助10
刚刚
刚刚
dahuihui完成签到,获得积分10
1秒前
可爱的函函应助荔枝采纳,获得10
2秒前
汉堡包应助谦让白开水采纳,获得10
2秒前
专注代秋完成签到 ,获得积分10
2秒前
WYF发布了新的文献求助10
2秒前
3秒前
3秒前
wawaaaah完成签到 ,获得积分10
3秒前
保亮发布了新的文献求助10
4秒前
crazystone关注了科研通微信公众号
5秒前
江月年完成签到,获得积分10
6秒前
森sen完成签到 ,获得积分10
6秒前
贝奥兰迪发布了新的文献求助30
8秒前
椰子糖完成签到,获得积分10
9秒前
玛珂巴巴珂完成签到,获得积分10
9秒前
9秒前
ding应助LHL采纳,获得10
10秒前
保亮完成签到,获得积分10
10秒前
WYF完成签到,获得积分10
10秒前
11秒前
共享精神应助peekaboo采纳,获得10
11秒前
YANYAN发布了新的文献求助10
13秒前
虚幻莹完成签到,获得积分20
14秒前
15秒前
15秒前
春困秋乏发布了新的文献求助10
16秒前
aaaaaa完成签到,获得积分10
16秒前
暖羊羊Y完成签到 ,获得积分10
16秒前
高兴的青发布了新的文献求助30
16秒前
贝奥兰迪完成签到,获得积分10
18秒前
板烧鸡腿堡完成签到,获得积分10
18秒前
小坤同学完成签到,获得积分10
20秒前
Barkdog发布了新的文献求助20
20秒前
XY发布了新的文献求助10
21秒前
汉堡包应助mahehivebv111采纳,获得30
22秒前
23秒前
bkagyin应助windows采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522867
求助须知:如何正确求助?哪些是违规求助? 3103814
关于积分的说明 9267680
捐赠科研通 2800541
什么是DOI,文献DOI怎么找? 1536978
邀请新用户注册赠送积分活动 715322
科研通“疑难数据库(出版商)”最低求助积分说明 708729