Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT

工件(错误) 计算机科学 成像体模 图像质量 还原(数学) 人工智能 计算机视觉 探测器 特征(语言学) 核医学 图像(数学) 医学 数学 电信 哲学 语言学 几何学
作者
Yannik C. Layer,Sebastian Faby,Viktor Haase,Bernhard Schmidt,Narine Mesropyan,Patrick Kupczyk,Alexander Isaak,Tatjana Dell,Julian A. Luetkens,Daniel Kuetting
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rli.0000000000001149
摘要

Objectives The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions. Materials and Methods Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios. Image reconstructions were initially performed without iMAR and subsequently with iMAR settings. The latter was tested with 7 different metal presets for each case. Furthermore, iMAR-reconstructed images were paired with VMIs at energy levels of 70 keV, 110 keV, 150 keV, and 190 keV. Qualitative assessments were conducted to evaluate image quality, artifact expression, and the emergence of new artifacts using a Likert scale. Image quality was rated on a scale of 1 (nondiagnostic) to 5 (excellent), whereas artifact severity was rated from 0 (none) to 5 (massive). Preferences for specific iMAR presets were documented. Quantitative analysis involved calculating Hounsfield unit (HU) differences between artifact-rich and artifact-free tissues. Results Overall, 96 different scanning series were evaluated. The optimal combination for artifact reduction was found to be iMAR neurocoils with VMIs at 150 keV and 190 keV, showcasing the most substantial reduction in artifacts with a median rating of 1 (standard: 4). VMIs at higher keV levels, such as 190 keV, resulted in reduced image quality, as indicated by a median rating of 3 (compared with 70 keV with a median of 5). Newly emerged artifact expression related to reconstructions varied among intervention devices, with iMAR thoracic coils exhibiting the least extent of artifacts (median: 2) and iMAR neurocoils displaying the most pronounced artifacts (median: 4). Qualitative analysis favored the combination of iMAR neurocoils with VMIs at 70 keV, showcasing the best results. Conversely, quantitative analysis revealed that the combination of iMAR neurocoils with VMIs at 190 keV yielded the best results, with an average artifact expression of 20.06 HU (standard: 167.98 HU; P < 0.0001). Conclusions The study underscores a substantial reduction in artifacts associated with intervention devices during PCDCT scans through the synergistic application of VMI and iMAR techniques. Specifically, the combination of VMIs at 70 keV with iMAR neurocoils was preferred, leading to enhanced diagnostic assessability of surrounding tissues and target lesions. The study demonstrates the potential of iMAR and VMIs for PCDCT-guided interventions. These advancements could improve accuracy, safety, efficiency, and patient outcomes in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孩纸超困完成签到,获得积分10
1秒前
1秒前
传奇3应助xin采纳,获得10
1秒前
Yh_alive完成签到,获得积分10
1秒前
科研通AI2S应助万能的翔王采纳,获得10
1秒前
缥缈觅荷发布了新的文献求助10
1秒前
张健发布了新的文献求助10
1秒前
1秒前
Ava应助认真的不评采纳,获得10
2秒前
2秒前
椰子完成签到,获得积分10
2秒前
二瓦发布了新的文献求助10
2秒前
ysd完成签到,获得积分10
2秒前
sushi完成签到,获得积分10
2秒前
3秒前
求知发布了新的文献求助10
3秒前
科研狂徒完成签到,获得积分10
3秒前
东溟渔夫发布了新的文献求助10
4秒前
spring完成签到,获得积分10
4秒前
5秒前
5秒前
咖啡豆发布了新的文献求助10
5秒前
顶级洋仔发布了新的文献求助10
6秒前
Jane发布了新的文献求助10
6秒前
6秒前
jhwang完成签到,获得积分10
7秒前
7秒前
孩纸超困发布了新的文献求助10
7秒前
7秒前
ken完成签到,获得积分10
8秒前
斯文败类应助小战采纳,获得10
8秒前
Yipou发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
huanir99完成签到,获得积分10
9秒前
lkw123753完成签到,获得积分10
9秒前
10秒前
浮游应助张健采纳,获得10
10秒前
科目三应助张健采纳,获得10
10秒前
菠萝发布了新的文献求助10
10秒前
高兴幼旋发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884959
求助须知:如何正确求助?哪些是违规求助? 4169995
关于积分的说明 12940003
捐赠科研通 3930680
什么是DOI,文献DOI怎么找? 2156678
邀请新用户注册赠送积分活动 1175110
关于科研通互助平台的介绍 1079741