Fe-Doped Ni2P Nanosheet Arrays as Self-supported Anodes for Sodium-Ion Batteries

纳米片 材料科学 阳极 磷化物 电化学 纳米技术 化学工程 兴奋剂 纳米尺度 电极 光电子学 冶金 化学 工程类 物理化学
作者
Chao Wang,Balaji Murugesan,Wenwen Li,Xinyi Ma,Qing Zhang,Qingqing Li,Zhengxiao Guo,Yurong Cai
出处
期刊:ACS applied nano materials [American Chemical Society]
被引量:4
标识
DOI:10.1021/acsanm.4c06085
摘要

Conversion-type anode materials, particularly transition metal phosphides (TMPs), are considered to be highly promising candidates for sodium-ion batteries (SIBs) due to their substantial theoretical capacity, which can reach up to 1000 mAh g–1, as well as their cost-effectiveness. But their practical application is constrained by significant changes, including substantial volume changes during charge/discharge cycles and poor reaction kinetics. Addressing these challenges requires precise nanoscale engineering to optimize material structure and functionality. Herein, we present the fabrication of a carbon-coated, Fe-doped nickel phosphide (Fe–Ni2P@C) nanosheet array directly grown on a three-dimensional nickel foam (NF) substrate via a simple hydrothermal and phosphating process. The hierarchical nanosheet array architecture offers several nanoscale advantages: the nanosheets provide abundant active sites for electrochemical reactions and significantly reduce Na+ diffusion distances, while the carbon coating effectively suppresses the volume expansion during cycling. Additionally, Fe doping at the nanoscale introduces phosphorus vacancies and increases the material's intrinsic conductivity and electrochemical reaction kinetics. This synergistic nanoscale design enables the Fe–Ni2P@C nanosheet arrays to function as self-supported anode materials without the need for binders, additives, or additional processing steps. As a result, the material achieves exceptional sodium storage performance, exhibiting a rate capability of 317.16 mAh g–1 at a current density of 2 A g–1 and a reversible capacity of 418.89 mAh g–1 following 500 cycles at a current density of 0.5 A g–1. This study highlights the critical role of nanoscale engineering in overcoming the limitations of TMP-based anodes and provides a facile and scalable approach for developing high-performance, self-supported anode materials for SIBs of the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路遥知马力完成签到,获得积分10
1秒前
2秒前
林子发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
香蕉觅云应助海比天蓝采纳,获得10
3秒前
充电宝应助海比天蓝采纳,获得10
4秒前
4秒前
yfy_fairy发布了新的文献求助10
4秒前
风时因絮发布了新的文献求助10
6秒前
6秒前
xixi完成签到 ,获得积分10
7秒前
7秒前
7秒前
zhou完成签到 ,获得积分10
7秒前
7秒前
研友_VZG7GZ应助。.。采纳,获得10
7秒前
kk雯发布了新的文献求助10
8秒前
坦率宛凝完成签到,获得积分10
8秒前
醉翁完成签到,获得积分10
8秒前
9秒前
左一酱发布了新的文献求助20
9秒前
科研巨额发布了新的文献求助10
10秒前
颜九完成签到,获得积分10
10秒前
10秒前
dynamoo应助666采纳,获得10
11秒前
11秒前
卷卷发布了新的文献求助10
11秒前
科研通AI6应助喵喵采纳,获得10
11秒前
11秒前
AAA院士杰青批发完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
一行发布了新的文献求助10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
空勒应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175