CXR-Seg: A Novel Deep Learning Network for Lung Segmentation from Chest X-Ray Images

分割 雅卡索引 计算机科学 人工智能 深度学习 Sørensen–骰子系数 模式识别(心理学) 特征(语言学) 背景(考古学) 编码器 图像分割 生物 古生物学 语言学 哲学 操作系统
作者
Sadia Din,Muhammad Shoaib,Erchin Serpedin
出处
期刊:Bioengineering [MDPI AG]
卷期号:12 (2): 167-167
标识
DOI:10.3390/bioengineering12020167
摘要

Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
dudu完成签到,获得积分10
1秒前
33333发布了新的文献求助10
3秒前
twb发布了新的文献求助10
4秒前
4秒前
田田田完成签到,获得积分10
4秒前
bmj发布了新的文献求助10
4秒前
缺水哥发布了新的文献求助10
6秒前
6秒前
光亮笑柳发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
10秒前
Wiiliam完成签到,获得积分10
10秒前
冷酷芝完成签到,获得积分10
11秒前
红莲墨生发布了新的文献求助10
12秒前
13秒前
13秒前
Wiiliam发布了新的文献求助30
13秒前
科研通AI5应助勤劳的如雪采纳,获得10
14秒前
迟大猫应助148ztf采纳,获得10
14秒前
14秒前
15秒前
风中的觅儿完成签到 ,获得积分10
16秒前
科研通AI5应助longtengfei采纳,获得10
16秒前
kyyy发布了新的文献求助10
18秒前
阿昊发布了新的文献求助10
18秒前
19秒前
哪吒大闹小布丁完成签到,获得积分10
19秒前
19秒前
万能图书馆应助33333采纳,获得10
20秒前
222完成签到,获得积分10
21秒前
23秒前
23秒前
逝水无痕发布了新的文献求助10
24秒前
丫丫发布了新的文献求助10
26秒前
卡恩完成签到 ,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538545
求助须知:如何正确求助?哪些是违规求助? 3116302
关于积分的说明 9324585
捐赠科研通 2814070
什么是DOI,文献DOI怎么找? 1546471
邀请新用户注册赠送积分活动 720547
科研通“疑难数据库(出版商)”最低求助积分说明 712073