陶瓷
电化学
材料科学
工作温度
化学工程
纳米技术
复合材料
化学
电气工程
电极
工程类
物理化学
作者
Fan Liu,David R. Diercks,Praveen Kumar,Arim Seong,Mohammed Hussain Abdul Jabbar,Cenk Gümeci,Yoshihisa Furuya,Nilesh Dale,Takanori Oku,Masahiro Usuda,Pejman Kazempoor,Iman Ghamarian,Lin Liu,Liyang Fang,Di Chen,Zixian Wang,Stephen J. Skinner,Chuancheng Duan
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2025-01-10
卷期号:11 (2)
标识
DOI:10.1126/sciadv.adq2507
摘要
Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs. We present approaches to redesigning PCECs via readily fabricated single-grain–thick, chemically homogeneous, and robust electrolytes and a nano-micro positive electrode. At 450°C, the PCECs achieve a peak power density of 1.6 watt per square centimeter on H 2 fuel, 0.5 watt per square centimeter on NH 3 fuel, and 0.3 watt per square centimeter on CH 4 fuel in fuel cell mode. In steam electrolysis mode, a current density of >0.6 ampere per square centimeter with a Faradaic efficiency of >90% is achievable at 1.4 volt and 400°C. In addition, exceptional durability (>2000 hours) has been demonstrated, with a degradation rate of <0.01 millivolt per 100 hours in fuel cell mode at 400°C.
科研通智能强力驱动
Strongly Powered by AbleSci AI