Using Natural Language Processing (NLP) Methods to Predict Topics Included in 2019 Ohio Syphilis Disease Intervention Specialist (DIS) Records

人工智能 自然语言处理 计算机科学 词汇分析 机器学习 支持向量机 统一医学语言系统 语言模型 朴素贝叶斯分类器 医学
作者
Payal Chakraborty,Ning Xia,Margot McNeill,David Kline,Abigail B. Shoben,William C. Miller,Abigail Norris Turner
出处
期刊:Sexually Transmitted Diseases [Lippincott Williams & Wilkins]
标识
DOI:10.1097/olq.0000000000002135
摘要

Abstract Background Free-text notes in disease intervention specialist (DIS) records may contain relevant information for STI control. In their current form, the notes are not analyzable without manual reading, which is labor-intensive and prone to error. Methods We used natural language processing (NLP) methods to analyze 2019 Ohio DIS syphilis records with non-missing notes (n = 1,987). We identified 21 topics relevant for transmission and case investigations. We manually coded these records to create “gold standard” labels for each topic (0 = topic not present, 1 = topic present), then trained machine learning models to identify the topics in the text. For models to analyze text data, the text must be converted to numbers. We explored two approaches to numerically represent words: (1) term frequency, inverse document frequency (TF-IDF), which measures importance of words based on how many times they appear in a record and in the dataset as a whole, and (2) GloVe embeddings, which are numerical vectors that were developed by researchers for each word in the English language to encode its semantic meaning. We explored three types of statistical models (naïve Bayes, support vector machine [SVM], and logistic regression) using TF-IDF, and one type of neural network model (long short-term memory [LSTM] model) using GloVe. All models were used for binary prediction (i.e., topic not present, topic present). Results For most topics, the LSTM model performed the best overall in identifying topics, and the SVM model performed the best among the statistical models. For example, the LSTM model predicted the topic “substance use” with high accuracy (97%), sensitivity (92%), and specificity (98%). No model performed well for uncommon topics (e.g., “alcohol use” or “delays in care”). Conclusions Machine learning models performed well in identifying some topics in 2019 Ohio syphilis records. This analysis is a first step in applying NLP methods to making DIS notes more accessible for analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐子扬发布了新的文献求助10
1秒前
汉堡包应助张达采纳,获得10
2秒前
怕孤单的听寒完成签到,获得积分10
2秒前
3秒前
4秒前
三十七度医完成签到,获得积分10
6秒前
7秒前
7秒前
TN驳回了十三应助
8秒前
9秒前
达不溜发布了新的文献求助10
11秒前
杨畅发布了新的文献求助10
12秒前
小小喵发布了新的文献求助10
12秒前
星辰大海应助单薄飞莲采纳,获得10
13秒前
13秒前
13秒前
13秒前
张达完成签到 ,获得积分10
14秒前
xujiejiuxi发布了新的文献求助10
14秒前
Jiaying完成签到,获得积分20
15秒前
16秒前
无辜不惜发布了新的文献求助20
17秒前
18秒前
杨畅完成签到,获得积分10
18秒前
啦啦啦发布了新的文献求助10
18秒前
明111完成签到 ,获得积分10
19秒前
19秒前
SciGPT应助小小喵采纳,获得10
20秒前
maoamo2024发布了新的文献求助10
21秒前
21秒前
23秒前
李健应助诉与山风听采纳,获得10
23秒前
23秒前
wangdong应助Mary采纳,获得10
23秒前
小耳朵完成签到,获得积分10
23秒前
24秒前
25秒前
若水发布了新的文献求助10
25秒前
单薄飞莲发布了新的文献求助10
25秒前
六金发布了新的文献求助10
26秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3720739
求助须知:如何正确求助?哪些是违规求助? 3266728
关于积分的说明 9945801
捐赠科研通 2980417
什么是DOI,文献DOI怎么找? 1634882
邀请新用户注册赠送积分活动 776105
科研通“疑难数据库(出版商)”最低求助积分说明 746136