Boundary-Aware Axial Attention Network for High-Quality Pavement Crack Detection

边界(拓扑) 计算机科学 质量(理念) 地质学 结构工程 工程类 数学 物理 数学分析 量子力学
作者
Kunlun Wu,Bo Peng,Donghai Zhai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 13555-13566 被引量:4
标识
DOI:10.1109/tnnls.2024.3497145
摘要

Pavement crack detection is a practical and challenging task that has the ability to significantly reduce the burden of manual building and road maintenance in intelligent transportation systems. Existing methods mainly focus on addressing common crack diseases and are poor in generalizing to other conditions of crack detection due to diverse environmental factors (e.g., illumination), topology complexity, and intensity in-homogeneity. Moreover, the samples suffer from the severe foreground-background imbalance and the model is easily prone to overfitting on trained anomalies, resulting in unsatisfactory performance. To tackle the aforementioned challenges and achieve high-quality pavement crack detection, we propose an innovative approach termed boundary-aware axial attention network (BAAN), which is composed of multiple position-guided axial attention (PAA) modules in a hierarchical encoder-decoder architecture. Specifically, it learns efficient contextual information via decomposed multidimensional position-guided attention to capture more precise spatial structures, and the proposed boundary regularization module (BRM) mines more discriminative foreground-background relationships to regularize the ambiguous details between diverse spatial regions. Moreover, we propose a novel boundary refinement loss (BRL) to alleviate the challenges associated with regional losses (e.g., pixel-wise cross-entropy loss) in the context of heavily imbalanced crack detection problems. The proposed BAAN is evaluated on four crack datasets and experimental results indicate that the BAAN consistently outperforms the state-of-the-art methods with fewer computational requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情怡完成签到,获得积分20
刚刚
WYB完成签到 ,获得积分10
刚刚
2秒前
哈尔发布了新的文献求助10
2秒前
热情怡发布了新的文献求助10
5秒前
7秒前
杜儒发布了新的文献求助10
8秒前
9秒前
9秒前
丸子完成签到 ,获得积分10
10秒前
10秒前
钙钛矿科研狗完成签到,获得积分20
11秒前
zhabgyyy完成签到,获得积分10
12秒前
guozizi完成签到,获得积分10
13秒前
14秒前
15秒前
yfjia给小树的求助进行了留言
15秒前
科研通AI6.1应助热情怡采纳,获得30
16秒前
深情安青应助mao采纳,获得30
17秒前
Rui发布了新的文献求助10
18秒前
丘比特应助taotao采纳,获得10
19秒前
pjxxx完成签到 ,获得积分10
19秒前
想得开居士完成签到 ,获得积分10
21秒前
21秒前
21秒前
研友_VZG7GZ应助liuchzzyy采纳,获得10
23秒前
小蘑菇应助等待的谷波采纳,获得10
25秒前
Twonej应助djdh采纳,获得30
26秒前
jojo发布了新的文献求助10
26秒前
Orange应助默默海露采纳,获得10
27秒前
27秒前
29秒前
31秒前
32秒前
neckerzhu发布了新的文献求助10
33秒前
默默海露完成签到,获得积分20
34秒前
放放发布了新的文献求助10
34秒前
mao发布了新的文献求助30
35秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872774
求助须知:如何正确求助?哪些是违规求助? 6491929
关于积分的说明 15669884
捐赠科研通 4990166
什么是DOI,文献DOI怎么找? 2690142
邀请新用户注册赠送积分活动 1632662
关于科研通互助平台的介绍 1590546