Efficiently constructing structurally diverse and complex organic molecules through selective catalytic functionalization is a central goal in synthetic chemistry, yet achieving precise control over multiple reactive centers in multisite substrates remains a formidable challenge. Building on foundational advances in single- and dual-selective transformations, we report a multimodal strategy for the selective carbonylation of 1,3-enynes, a versatile class of multisite substrates. Through meticulous fine-tuning of the catalytic conditions, our approach enables five distinct regio- and stereoselective carbonylative transformations, including direct functionalization (1,2- and 2,1-hydroaminocarbonylation) and tandem cyclization pathways (2,4-, 1,3-, and 2,3-carbonylation). Furthermore, mechanistic studies suggested that multidimensional precise regulation enables the seamless relay of up to three tandem reactions (hydroaminocarbonylation-hydroamination–transamination) with exceptional accuracy. This unified platform not only establishes a robust framework for tackling the enduring challenges of selectivity control in multisite substrates but also broadens the chemical space accessible through 1,3-enyne transformations, exemplifying atom- and step-economic principles and paving the way for transformative advancements in drug discovery, materials science, and beyond.