Precise travelling-wave behaviour in problems with doubly nonlinear diffusion

数学 行波 非线性系统 扩散 数学分析 应用数学 统计物理学 牙石(牙科) 物理 量子力学 医学 热力学 牙科
作者
Yihong Du,Alejandro Gárriz,Fernando Quirós
出处
期刊:Journal of the European Mathematical Society [European Mathematical Society]
标识
DOI:10.4171/jems/1590
摘要

We study a family of reaction-diffusion equations of the form u_{t}=\Delta_{p} u^{m} + h(u) for x\in\mathbb{R}^{N} , with a doubly nonlinear diffusion term \Delta_{p} u^{m} involving both the p -Laplacian and the porous medium operators. The reaction term h(u) is also rather general, covering in particular monostable, bistable and combustion type nonlinearities. We consider the so-called slow diffusion regime, which leads to a degenerate behaviour at the level u=0 , and so nonnegative solutions with compactly supported initial data have a compact support for any later time, hence generating a free boundary. Equations of this family have a unique (up to translations) travelling wave with a finite front (free boundary). When the initial datum is compactly supported and the solution converges to 1 (which is the case, as we show, for wide classes of such initial data), in the radially symmetric case, we prove that the solution converges to a translation of this unique travelling wave in the radial direction, with a precise logarithmic correction in the position of the free boundary when the dimension N\geq 2 ; and in the nonradial case, we obtain the asymptotic location of the free boundary and level sets up to an error term of size O(1) . Such precise results have been known in high space dimensions only in the special case p=2 and h(u) a particular monostable nonlinearity from the recent work by Du, Quirós and Zhou (2020). The extension to the much more general situation here relies on several new techniques, including a crucial estimate for the flux, which is new even for the case h(u)\equiv 0 in high space dimensions, and is of independent interest. Most of our results are new also for the special cases (a) p=2 (porous medium diffusion) and (b) m=1 ( p -Laplacian diffusion).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
J.完成签到 ,获得积分10
1秒前
元气马完成签到,获得积分10
1秒前
清晨完成签到,获得积分10
2秒前
2秒前
芙瑞完成签到 ,获得积分10
3秒前
yznfly应助尼可刹米洛贝林采纳,获得10
3秒前
你好发布了新的文献求助10
4秒前
心理可达鸭完成签到,获得积分10
4秒前
王贾贾发布了新的文献求助10
5秒前
007完成签到,获得积分10
6秒前
科研通AI6应助虚心盼夏采纳,获得10
6秒前
WEITAIBAO发布了新的文献求助10
6秒前
wikkk完成签到,获得积分10
7秒前
7秒前
jjh发布了新的文献求助10
8秒前
9秒前
淅淅沥沥完成签到,获得积分10
9秒前
科研通AI2S应助普外科老白采纳,获得10
9秒前
不安的蜗牛完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
zhang完成签到,获得积分10
11秒前
科研通AI6应助wikkk采纳,获得10
11秒前
11秒前
眼睛大羽毛完成签到,获得积分20
15秒前
15秒前
舒心抽屉发布了新的文献求助10
15秒前
Ava应助听风遇见采纳,获得10
16秒前
17秒前
17秒前
18秒前
Ginger完成签到,获得积分20
18秒前
19秒前
标致的问晴完成签到,获得积分10
19秒前
19秒前
jiningrui给jiningrui的求助进行了留言
19秒前
大个应助Sunyuu采纳,获得10
19秒前
21秒前
chenxuuu完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259101
求助须知:如何正确求助?哪些是违规求助? 4420900
关于积分的说明 13761392
捐赠科研通 4294658
什么是DOI,文献DOI怎么找? 2356512
邀请新用户注册赠送积分活动 1352924
关于科研通互助平台的介绍 1313807