Precise travelling-wave behaviour in problems with doubly nonlinear diffusion

数学 行波 非线性系统 扩散 数学分析 应用数学 统计物理学 牙石(牙科) 物理 量子力学 医学 热力学 牙科
作者
Yihong Du,Alejandro Gárriz,Fernando Quirós
出处
期刊:Journal of the European Mathematical Society [EMS Press]
标识
DOI:10.4171/jems/1590
摘要

We study a family of reaction-diffusion equations of the form u_{t}=\Delta_{p} u^{m} + h(u) for x\in\mathbb{R}^{N} , with a doubly nonlinear diffusion term \Delta_{p} u^{m} involving both the p -Laplacian and the porous medium operators. The reaction term h(u) is also rather general, covering in particular monostable, bistable and combustion type nonlinearities. We consider the so-called slow diffusion regime, which leads to a degenerate behaviour at the level u=0 , and so nonnegative solutions with compactly supported initial data have a compact support for any later time, hence generating a free boundary. Equations of this family have a unique (up to translations) travelling wave with a finite front (free boundary). When the initial datum is compactly supported and the solution converges to 1 (which is the case, as we show, for wide classes of such initial data), in the radially symmetric case, we prove that the solution converges to a translation of this unique travelling wave in the radial direction, with a precise logarithmic correction in the position of the free boundary when the dimension N\geq 2 ; and in the nonradial case, we obtain the asymptotic location of the free boundary and level sets up to an error term of size O(1) . Such precise results have been known in high space dimensions only in the special case p=2 and h(u) a particular monostable nonlinearity from the recent work by Du, Quirós and Zhou (2020). The extension to the much more general situation here relies on several new techniques, including a crucial estimate for the flux, which is new even for the case h(u)\equiv 0 in high space dimensions, and is of independent interest. Most of our results are new also for the special cases (a) p=2 (porous medium diffusion) and (b) m=1 ( p -Laplacian diffusion).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小机灵鬼儿完成签到,获得积分10
1秒前
LaiC完成签到,获得积分10
2秒前
wen发布了新的文献求助10
2秒前
情怀应助心信鑫采纳,获得30
2秒前
jjj完成签到,获得积分10
2秒前
动听曼卉完成签到 ,获得积分10
4秒前
鱿鱼先生发布了新的文献求助10
4秒前
4秒前
独角戏发布了新的文献求助10
5秒前
星辰大海应助童童采纳,获得10
5秒前
NexusExplorer应助哦哦采纳,获得10
7秒前
yang完成签到,获得积分10
7秒前
8秒前
ywzwszl完成签到,获得积分0
8秒前
简单洋完成签到,获得积分10
11秒前
乌龟完成签到,获得积分10
12秒前
13秒前
SciGPT应助独角戏采纳,获得10
13秒前
研友_8Wz5MZ完成签到,获得积分10
14秒前
14秒前
15秒前
田様应助8y24dp采纳,获得10
16秒前
白花鬼针草完成签到,获得积分10
17秒前
Yrzsh发布了新的文献求助10
18秒前
18秒前
科研通AI6应助斯多姆采纳,获得10
19秒前
19秒前
童童发布了新的文献求助10
20秒前
21秒前
酒尚温发布了新的文献求助10
21秒前
22秒前
xueshu666发布了新的文献求助10
23秒前
简绮完成签到 ,获得积分10
23秒前
轻松的水壶完成签到 ,获得积分10
26秒前
清脆香萱完成签到,获得积分10
26秒前
Yrzsh完成签到,获得积分20
27秒前
rofsc完成签到 ,获得积分0
28秒前
8y24dp发布了新的文献求助10
28秒前
32秒前
顾矜应助MO采纳,获得10
34秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456419
求助须知:如何正确求助?哪些是违规求助? 4563283
关于积分的说明 14289097
捐赠科研通 4487871
什么是DOI,文献DOI怎么找? 2458056
邀请新用户注册赠送积分活动 1448402
关于科研通互助平台的介绍 1424016