A cross‐scale transfer learning framework: prediction of SOD activity from leaf microstructure to macroscopic hyperspectral imaging

高光谱成像 卷积神经网络 学习迁移 超氧化物歧化酶 生物系统 吸收(声学) 近红外光谱 波长 人工智能 生物 物理 模式识别(心理学) 计算机科学 光学 生物化学
作者
Songlei Wang,Yan Yan,Yao Zhang,Yiyang Zhang,Yune Cao,Longguo Wu
出处
期刊:Plant Biotechnology Journal [Wiley]
标识
DOI:10.1111/pbi.14566
摘要

Summary Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near‐infrared (Vis–NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short‐term temporal memory (CNN‐LSTM) technique. Using heterogeneous two‐dimensional correlation spectra (H2D‐COS), the sensitive macroscopic and microscopic absorption peaks connected to tomato leaves' SOD activity were made clear. The combination of CNN‐LSTM algorithm and H2D‐COS analysis was used to research transfer learning between microscopic and macroscopic models based on sensitive wavelengths. The results demonstrated that the CNN‐LSTM model, which was based on the FD preprocessed spectra, had the best performance for the microscopic model, with R C and R P reaching 0.9311 and 0.9075, and RMSEC and RMSEP reaching 0.0109 U/mg and 0.0127 U/mg respectively. There were 10 macroscopic and 10 microscopic significant sensitivity peaks found. The transfer learning was carried out using sensitive wavelengths, and the model performed well with an R P value of 0.7549 and an RMSEP of 0.0725 U/mg. The combined CNN algorithm and H2D‐COS analysis demonstrated the viability of transfer learning across microscopic and macroscopic models for quantitative tomato leaf SOD prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wjj发布了新的文献求助10
2秒前
4秒前
nancy发布了新的文献求助10
5秒前
molo完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助小慧采纳,获得10
9秒前
9秒前
於依白发布了新的文献求助10
10秒前
汪汪完成签到,获得积分10
10秒前
清爽安南发布了新的文献求助10
10秒前
大大怪将军完成签到,获得积分10
11秒前
Lionnn发布了新的文献求助10
13秒前
李健的粉丝团团长应助hh采纳,获得10
14秒前
14秒前
nancy完成签到,获得积分10
15秒前
大晨完成签到,获得积分10
15秒前
17秒前
17秒前
19秒前
samifranco完成签到,获得积分10
19秒前
蒙蒙完成签到,获得积分10
21秒前
斑驳发布了新的文献求助10
22秒前
蒙蒙发布了新的文献求助10
26秒前
ei123应助淡水痕采纳,获得10
27秒前
慕青应助moji采纳,获得10
28秒前
28秒前
30秒前
今后应助疯狂的月亮采纳,获得10
32秒前
荟菁完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745005
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056553
捐赠科研通 3004141
什么是DOI,文献DOI怎么找? 1649480
邀请新用户注册赠送积分活动 785342
科研通“疑难数据库(出版商)”最低求助积分说明 751049