陶瓷
储能
材料科学
电场
铁电陶瓷
功率密度
铁电性
复合材料
光电子学
电介质
功率(物理)
热力学
物理
量子力学
作者
Peng Shi,Jin Liu,Yuechan Song,Lina Liu,Wenwen Wu,Xiaobin Zhou,Xiao‐Ming Chen,Yanmin Jia,Xiaojie Lou,Peng Liu
摘要
The energy storage properties of the 0.72Bi0.5Na0.5TiO3-0.28SrTiO3 system have been heavily investigated; however, achieving both high recoverable energy storage density (Wr) and large energy efficiency (η) remains a challenge. In this study, relaxor ferroelectric ceramics exhibiting high Wr and η were prepared by introducing BaSnO3 into 0.9(Bi0.5Na0.5)0.72Sr0.28TiO3-0.1Bi(Mg0.5Ti0.5)O3 relaxor ceramics. A remarkable Wr of 7.5 J/cm3 and η of 91.2% were achieved in the 0.94[0.9(Bi0.5Na0.5)0.72Sr0.28TiO3-0.1Bi(Mg0.5Ti0.5)O3]-0.06BaSnO3 ceramic at an electric field of 460 kV/cm. The η and the energy storage potential (Wr/Eb), respectively, surpass those reported for most ceramics in recent years. The introduction of high-temperature-stable BaSnO3 imparted excellent temperature and frequency stability to the ceramic. The ceramic exhibited a Wr of 3.6 J/cm3 and an η of 79.6% at 160 °C and 265 kV/cm. The sample has a power density of 202.8 MW/cm3, an energy density of 2.2 J/cm3 at an electric field of 260 kV/cm, and a fast charge–discharge capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI