亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Domain Adversarial Framework for Improving Cross-Subject Motor Imagery Classification

对抗制 计算机科学 人工智能 领域(数学分析) 运动表象 主题(文档) 上下文图像分类 机器学习 模式识别(心理学) 图像(数学) 心理学 数学 脑-机接口 万维网 脑电图 数学分析 精神科
作者
Guoning Cui,Bin Liu,Zhiwei Zhao,Nenghai Yu
标识
DOI:10.1109/cac59555.2023.10450267
摘要

Motor imagery classification plays a crucial role in brain-computer interfaces by decoding electroencephalogram (EEG) signals associated with motor imagery and enabling control of external devices. Existing methods often face challenges in generalizing to new subjects due to variations in brain activity patterns. To address this issue, we propose a novel multi-domain adversarial framework that learns task-related representations while being unrelated of subject differences. Our framework incorporates multiple domain adversarial discriminators and introduces a unique adversarial training strategy to align feature distributions across subjects, thereby optimizing classification objectives. Through extensive cross-subject experiments on the widely used BCI Competition IV-2a dataset, we demonstrate the effectiveness of our approach, achieving an average improvement in classification accuracy. These findings indicate the potential of our framework to advance motor imagery classification, benefiting areas such as human-computer interaction, automatic control, and medical sports rehabilitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
SiboN发布了新的文献求助10
10秒前
11秒前
酷炫灰狼发布了新的文献求助10
16秒前
18秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
25秒前
29秒前
多乐多发布了新的文献求助10
32秒前
1分钟前
比格大王完成签到,获得积分10
1分钟前
1分钟前
tongtong12345发布了新的文献求助40
1分钟前
1分钟前
冷静尔芙发布了新的文献求助10
1分钟前
1分钟前
Otter完成签到,获得积分10
1分钟前
冷静尔芙完成签到,获得积分10
1分钟前
今后应助求求好心人采纳,获得10
1分钟前
潇洒诗槐完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
潇洒诗槐发布了新的文献求助10
2分钟前
温暖的乐蓉完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
长尾巴的人类完成签到,获得积分10
2分钟前
2分钟前
ada发布了新的文献求助10
2分钟前
比格大王发布了新的文献求助20
2分钟前
所所应助郭楠楠采纳,获得10
3分钟前
Lucas应助郭楠楠采纳,获得10
3分钟前
Hello应助郭楠楠采纳,获得10
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
共享精神应助潇洒诗槐采纳,获得10
3分钟前
3分钟前
3分钟前
初晴完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359