Decoding mood of the Twitterverse on ESG investing: opinion mining and key themes using machine learning

情绪分析 主题模型 社会化媒体 社交媒体分析 潜在Dirichlet分配 独创性 企业社会责任 公司治理 利益相关者 扎根理论 公共关系 数据科学 计算机科学 知识管理 业务 社会学 定性研究 政治学 人工智能 万维网 社会科学 财务
作者
Rachana Jaiswal,Shashank Gupta,Aviral Kumar Tiwari
出处
期刊:Management research review [Emerald Publishing Limited]
卷期号:47 (8): 1221-1252 被引量:8
标识
DOI:10.1108/mrr-07-2023-0526
摘要

Purpose Grounded in the stakeholder theory and signaling theory, this study aims to broaden the research agenda on environmental, social and governance (ESG) investing by uncovering public sentiments and key themes using Twitter data spanning from 2009 to 2022. Design/methodology/approach Using various machine learning models for text tonality analysis and topic modeling, this research scrutinizes 1,842,985 Twitter texts to extract prevalent ESG investing trends and gauge their sentiment. Findings Gibbs Sampling Dirichlet Multinomial Mixture emerges as the optimal topic modeling method, unveiling significant topics such as “Physical risk of climate change,” “Employee Health, Safety and well-being” and “Water management and Scarcity.” RoBERTa, an attention-based model, outperforms other machine learning models in sentiment analysis, revealing a predominantly positive shift in public sentiment toward ESG investing over the past five years. Research limitations/implications This study establishes a framework for sentiment analysis and topic modeling on alternative data, offering a foundation for future research. Prospective studies can enhance insights by incorporating data from additional social media platforms like LinkedIn and Facebook. Practical implications Leveraging unstructured data on ESG from platforms like Twitter provides a novel avenue to capture company-related information, supplementing traditional self-reported sustainability disclosures. This approach opens new possibilities for understanding a company’s ESG standing. Social implications By shedding light on public perceptions of ESG investing, this research uncovers influential factors that often elude traditional corporate reporting. The findings empower both investors and the general public, aiding managers in refining ESG and management strategies. Originality/value This study marks a groundbreaking contribution to scholarly exploration, to the best of the authors’ knowledge, by being the first to analyze unstructured Twitter data in the context of ESG investing, offering unique insights and advancing the understanding of this emerging field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青羽落霞完成签到 ,获得积分10
2秒前
健壮的思枫完成签到,获得积分10
2秒前
GD88完成签到,获得积分10
6秒前
火火完成签到,获得积分10
6秒前
月月完成签到,获得积分10
7秒前
Unicorn完成签到 ,获得积分10
9秒前
11秒前
Earnestlee完成签到,获得积分10
12秒前
Jason-1024完成签到,获得积分10
15秒前
BAI_1完成签到,获得积分10
17秒前
18秒前
聪明的破茧完成签到,获得积分10
18秒前
Moriarty完成签到,获得积分10
20秒前
yyy完成签到 ,获得积分10
21秒前
碎落星沉完成签到,获得积分10
22秒前
23秒前
平常语蕊发布了新的文献求助10
24秒前
26秒前
廉锦枫发布了新的文献求助10
28秒前
古炮完成签到,获得积分10
30秒前
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
cdercder应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
打打应助科研通管家采纳,获得10
32秒前
随遇而安应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
HEAR应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得10
33秒前
chichenglin完成签到 ,获得积分10
35秒前
37秒前
独自受罪完成签到 ,获得积分10
40秒前
小悟空的美好年华完成签到 ,获得积分10
40秒前
煮饭吃Zz完成签到 ,获得积分10
41秒前
wanglu完成签到,获得积分10
45秒前
木木完成签到 ,获得积分10
45秒前
yoyocici1505完成签到,获得积分10
46秒前
gy完成签到 ,获得积分10
46秒前
rh完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761059
求助须知:如何正确求助?哪些是违规求助? 3304973
关于积分的说明 10131424
捐赠科研通 3018828
什么是DOI,文献DOI怎么找? 1657854
邀请新用户注册赠送积分活动 791739
科研通“疑难数据库(出版商)”最低求助积分说明 754604