Finding Robust and Influential Nodes from Networks under Cascading Failures Using a Memetic Algorithm

模因算法 计算机科学 人工智能 算法 数学优化 机器学习 局部搜索(优化) 数学
作者
Shun Cai,Shuai Wang,Minghao Chen
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:589: 127704-127704 被引量:2
标识
DOI:10.1016/j.neucom.2024.127704
摘要

In the research of complex networks, how to find a set of nodes in the network with the most extensive range in the propagation process, i.e., the Influence Maximization (IM) problem, is one of the focal topics. Existing studies mainly consider the information dissemination process on networks and how to select diffusive nodes efficiently, but little attention has been paid to changes related to the network structure. In reality, networked systems are exposed to uncertain interferences and even destructive sabotages, and cascading failures are one common destruction that can cause networks to collapse even if only a small number of nodes fail. In the case of various complex environmental factors, how to select robust and influential nodes, i.e., the robust influence maximization (RIM) problem, is of great importance in promoting the realistic application of the influence maximization problem. This paper investigates the RIM problem under cascading failures to address the shortcomings in previous studies. Based on existing research, a new performance evaluation metric, RS-cf, is designed to assess the level of robust influence in a numerical form. For solving the seed determination problem, a Memetic algorithm towards the RIM problem under cascading failures, MA-RIMCF, is designed to find nodes with stable information propagation capability guided by RS-cf. Experiments have been conducted on both synthetic and realistic networks to validate the performance of the algorithm. Results indicate that MA-RIMCF can obtain competitive candidates over existing approaches, and seeds with robust and influential abilities are generated to solve diffusion dilemmas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助搞怪绿柳采纳,获得10
2秒前
5秒前
今后应助认真若云采纳,获得10
6秒前
111关注了科研通微信公众号
8秒前
Cookies完成签到,获得积分10
11秒前
11秒前
骐骥完成签到,获得积分10
11秒前
醉熏的鑫完成签到,获得积分10
14秒前
Lu_ckilly完成签到 ,获得积分10
14秒前
14秒前
汉堡包应助San万采纳,获得10
15秒前
王m完成签到 ,获得积分10
15秒前
17秒前
17秒前
橱窗发布了新的文献求助10
17秒前
19秒前
醉熏的鑫发布了新的文献求助10
21秒前
顺心的皓轩完成签到,获得积分10
22秒前
22秒前
24秒前
25秒前
今后应助搞怪绿柳采纳,获得10
26秒前
27秒前
29秒前
祎橘发布了新的文献求助10
31秒前
陈tl完成签到,获得积分10
31秒前
英俊的铭应助化工渣渣采纳,获得10
31秒前
沉静雁兰应助南客行采纳,获得10
36秒前
luke17743508621完成签到 ,获得积分10
37秒前
37秒前
37秒前
zhangyu应助青青草采纳,获得10
37秒前
张雷应助Cindy采纳,获得40
39秒前
认真又亦完成签到 ,获得积分10
39秒前
39秒前
孙燕应助Wang0102采纳,获得10
41秒前
qyang发布了新的文献求助10
42秒前
xchen完成签到,获得积分20
43秒前
张爱学发布了新的文献求助10
44秒前
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629