Finding Robust and Influential Nodes from Networks under Cascading Failures Using a Memetic Algorithm

模因算法 计算机科学 人工智能 算法 数学优化 机器学习 局部搜索(优化) 数学
作者
Shun Cai,Shuai Wang,Minghao Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:589: 127704-127704 被引量:2
标识
DOI:10.1016/j.neucom.2024.127704
摘要

In the research of complex networks, how to find a set of nodes in the network with the most extensive range in the propagation process, i.e., the Influence Maximization (IM) problem, is one of the focal topics. Existing studies mainly consider the information dissemination process on networks and how to select diffusive nodes efficiently, but little attention has been paid to changes related to the network structure. In reality, networked systems are exposed to uncertain interferences and even destructive sabotages, and cascading failures are one common destruction that can cause networks to collapse even if only a small number of nodes fail. In the case of various complex environmental factors, how to select robust and influential nodes, i.e., the robust influence maximization (RIM) problem, is of great importance in promoting the realistic application of the influence maximization problem. This paper investigates the RIM problem under cascading failures to address the shortcomings in previous studies. Based on existing research, a new performance evaluation metric, RS-cf, is designed to assess the level of robust influence in a numerical form. For solving the seed determination problem, a Memetic algorithm towards the RIM problem under cascading failures, MA-RIMCF, is designed to find nodes with stable information propagation capability guided by RS-cf. Experiments have been conducted on both synthetic and realistic networks to validate the performance of the algorithm. Results indicate that MA-RIMCF can obtain competitive candidates over existing approaches, and seeds with robust and influential abilities are generated to solve diffusion dilemmas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助经法采纳,获得10
刚刚
NANA发布了新的文献求助10
刚刚
2秒前
2秒前
3秒前
5秒前
5秒前
6秒前
科研通AI5应助无悔呀采纳,获得10
6秒前
6秒前
littlewhite关注了科研通微信公众号
7秒前
7秒前
零点起步完成签到,获得积分10
7秒前
慕青应助大力的含卉采纳,获得10
7秒前
善良过客发布了新的文献求助10
8秒前
8秒前
8秒前
dildil发布了新的文献求助10
8秒前
8秒前
hu970发布了新的文献求助10
9秒前
9秒前
王思鲁发布了新的文献求助30
9秒前
七个小矮人完成签到,获得积分10
10秒前
Aria完成签到,获得积分10
10秒前
感性的安露应助结实雪卉采纳,获得20
11秒前
零点起步发布了新的文献求助10
12秒前
故意的傲玉应助Ll采纳,获得10
12秒前
斯文败类应助xiuxiu_27采纳,获得10
12秒前
胖子完成签到,获得积分10
12秒前
王巧巧完成签到,获得积分10
12秒前
tangsuyun发布了新的文献求助10
13秒前
祝顺遂发布了新的文献求助10
13秒前
Seven发布了新的文献求助10
13秒前
土拨鼠完成签到 ,获得积分10
14秒前
邢夏之发布了新的文献求助10
14秒前
漂亮芹菜完成签到,获得积分10
14秒前
ZXH完成签到,获得积分10
14秒前
Evelyn完成签到 ,获得积分10
14秒前
习习应助sb采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759