Finding Robust and Influential Nodes from Networks under Cascading Failures Using a Memetic Algorithm

模因算法 计算机科学 人工智能 算法 数学优化 机器学习 局部搜索(优化) 数学
作者
Shun Cai,Shuai Wang,Minghao Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:589: 127704-127704 被引量:2
标识
DOI:10.1016/j.neucom.2024.127704
摘要

In the research of complex networks, how to find a set of nodes in the network with the most extensive range in the propagation process, i.e., the Influence Maximization (IM) problem, is one of the focal topics. Existing studies mainly consider the information dissemination process on networks and how to select diffusive nodes efficiently, but little attention has been paid to changes related to the network structure. In reality, networked systems are exposed to uncertain interferences and even destructive sabotages, and cascading failures are one common destruction that can cause networks to collapse even if only a small number of nodes fail. In the case of various complex environmental factors, how to select robust and influential nodes, i.e., the robust influence maximization (RIM) problem, is of great importance in promoting the realistic application of the influence maximization problem. This paper investigates the RIM problem under cascading failures to address the shortcomings in previous studies. Based on existing research, a new performance evaluation metric, RS-cf, is designed to assess the level of robust influence in a numerical form. For solving the seed determination problem, a Memetic algorithm towards the RIM problem under cascading failures, MA-RIMCF, is designed to find nodes with stable information propagation capability guided by RS-cf. Experiments have been conducted on both synthetic and realistic networks to validate the performance of the algorithm. Results indicate that MA-RIMCF can obtain competitive candidates over existing approaches, and seeds with robust and influential abilities are generated to solve diffusion dilemmas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆烂完成签到 ,获得积分10
1秒前
吴学仕发布了新的文献求助10
1秒前
1秒前
中五关注了科研通微信公众号
1秒前
2秒前
ccherty完成签到,获得积分10
2秒前
2秒前
ShujunOvO发布了新的文献求助10
2秒前
4秒前
4秒前
Kervaff完成签到,获得积分10
4秒前
5秒前
5秒前
十言发布了新的文献求助10
6秒前
sunshine发布了新的文献求助10
6秒前
7秒前
mxq完成签到,获得积分10
7秒前
鹿茸与共发布了新的文献求助10
7秒前
吴学仕完成签到,获得积分10
8秒前
虚幻凌珍关注了科研通微信公众号
8秒前
无所屌谓完成签到,获得积分10
9秒前
舒心寇发布了新的文献求助20
9秒前
英姑应助Foremelon采纳,获得10
9秒前
十一发布了新的文献求助10
10秒前
10秒前
LH发布了新的文献求助10
10秒前
英姑应助lalala采纳,获得10
10秒前
yym完成签到,获得积分10
10秒前
Akim应助小彭采纳,获得10
11秒前
无解完成签到,获得积分10
11秒前
ShujunOvO完成签到,获得积分10
11秒前
mahliya完成签到,获得积分10
11秒前
11秒前
林夕发布了新的文献求助10
13秒前
qiong253完成签到 ,获得积分10
14秒前
lll完成签到 ,获得积分10
15秒前
15秒前
科研通AI2S应助你不刷牙采纳,获得30
15秒前
英俊的铭应助清璃采纳,获得10
15秒前
闪闪绮露完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313135
求助须知:如何正确求助?哪些是违规求助? 2945475
关于积分的说明 8525639
捐赠科研通 2621234
什么是DOI,文献DOI怎么找? 1433433
科研通“疑难数据库(出版商)”最低求助积分说明 665006
邀请新用户注册赠送积分活动 650492