PatchDetector: Pluggable and non-intrusive patch for small object detection

计算机科学 目标检测 架空(工程) 对象(语法) 人工智能 资源(消歧) 计算机视觉 模式识别(心理学) 计算机网络 操作系统
作者
Linyun Zhou,Shengxuming Zhang,Tian Qiu,Wenxiang Xu,Zunlei Feng,Mingli Song
出处
期刊:Neurocomputing [Elsevier]
卷期号:589: 127715-127715 被引量:1
标识
DOI:10.1016/j.neucom.2024.127715
摘要

Object detection is one of the core tasks in computer vision that serves as a crucial underpinning for numerous applications. In recent years, deep learning-based methods have achieved remarkable performance in object detection. However, the performance of small objects still remains unsatisfactory. Therefore, some specific architectures have been proposed to address this issue in certain areas, such as remote-sensing and UAV images. In this paper, we aim to design a pluggable and non-intrusive method, termed as PatchDetector, to improve the performance of small object detection, which can effectively avoid the time and resource overhead of retraining the entire network. To achieve that, we first analyze why the mainstream networks perform poorly on small objects and find out that the fundamental reason is that the features of small are superseded by the background, which leads to a significant semantic gap in multi-level layers. Then, significance analysis is conducted to find the essential features for improving the small object detection. Next, with the located significant features, we devise a pluggable patch network for extracting essential features for small objects, which is non-intrusive to the original network. Experiments on mainstream detectors, including YOLO series and Faster RCNN, show that the proposed PatchDetector achieves 0.4%∼2.0% mAP on small objects while not compromising the performance of medium and large objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助x1采纳,获得20
刚刚
仁继宪完成签到 ,获得积分10
1秒前
SciGPT应助是乐乐呀采纳,获得10
1秒前
爱静静给卟乖的求助进行了留言
2秒前
a雪橙完成签到 ,获得积分10
3秒前
MoNesy完成签到,获得积分10
4秒前
李小伟完成签到,获得积分10
4秒前
JR完成签到,获得积分20
5秒前
王提发布了新的文献求助10
5秒前
JamesPei应助xiao采纳,获得30
5秒前
贰鸟应助飘逸人达采纳,获得20
5秒前
12秒前
13秒前
Owen应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
wking应助科研通管家采纳,获得10
13秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得30
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
加菲丰丰应助科研通管家采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
无花果应助郝宝真采纳,获得10
16秒前
17秒前
传奇3应助big龙采纳,获得10
17秒前
是乐乐呀发布了新的文献求助10
17秒前
CipherSage应助JR采纳,获得30
18秒前
Derik完成签到,获得积分10
19秒前
20秒前
桐桐应助relexer采纳,获得10
20秒前
Karinaa发布了新的文献求助10
20秒前
姜维完成签到,获得积分10
21秒前
咩咩发布了新的文献求助10
22秒前
坚定黑夜完成签到,获得积分10
23秒前
OnMyWorldside完成签到,获得积分10
23秒前
科研通AI2S应助遥感小虫采纳,获得10
24秒前
28秒前
大渣饼完成签到 ,获得积分10
30秒前
飘逸人达完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813989
关于积分的说明 7902647
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187