表观遗传学
肿瘤微环境
组蛋白
新陈代谢
瓦博格效应
癌变
免疫系统
计算生物学
细胞代谢
生物
细胞生物学
癌症
癌细胞
生物化学
遗传学
DNA
基因
作者
Xiaoning Yu,Jing Yang,Jin Xu,Haoqi Pan,Wei Wang,Xianjun Yu,Si Shi
摘要
The Warburg Effect is one of the most well-known cancer hallmarks.This metabolic pattern centered on lactate has extremely complex effects on various aspects of tumor microenvironment, including metabolic remodeling, immune suppression, cancer cell migration, and drug resistance development.Based on accumulating evidence, metabolites are likely to participate in the regulation of biological processes in the microenvironment and to form a feedback loop.Therefore, further revealing the key mechanism of lactate-mediated oncological effects is a reasonable scientific idea.The discovery and refinement of histone lactylation in recent years has laid a firm foundation for the above idea.Histone lactylation is a post-translational modification that occurs at lysine sites on histones.Specific enzymes, known as "writers" and "erasers", catalyze the addition or removal, respectively, of lactacyl group at target lysine sites.An increasing number of investigations have reported this modification as key to multiple cellular procedures.In this review, we discuss the close connection between histone lactylation and a series of biological processes in the tumor microenvironment, including tumorigenesis, immune infiltration, and energy metabolism.Finally, this review provides insightful perspectives, identifying promising avenues for further exploration and potential clinical application in this field of research.
科研通智能强力驱动
Strongly Powered by AbleSci AI