电催化剂
分解水
材料科学
过电位
塔菲尔方程
析氧
化学工程
层状双氢氧化物
异质结
催化作用
纳米技术
无机化学
电极
光电子学
物理化学
化学
光催化
电化学
生物化学
工程类
氢氧化物
作者
Yaxun Sun,Qingguo Cai,Ze Wang,Zhichun Li,Qianyu Zhou,Xin Li,Dongye Zhao,Jianfeng Lu,Shouqin Tian,Yong Li,Shifeng Wang
标识
DOI:10.1021/acsami.3c18458
摘要
NiFe-layered double hydroxides (NiFe-LDHs), as promising electrocatalysts, have received significant research attention for hydrogen and oxygen generation through water splitting. However, the slow oxidation kinetics of NiFe-LDH, due to the limited number of active sites and the low conductivity, hinders the improvement of the water-splitting efficiency. Therefore, to overcome the obstacles, two-dimensional (2D) SnS was first explored to tailor the prepared NiFe-LDH via the hydrothermal method. A NiFe-LDH/SnS heterojunction is built, which is observed from the microstructural investigations. SnS incorporation could greatly improve the conductivity of the NiFe-LDH sheets, which was reflected by the reduced charge transfer resistance. Moreover, SnS layers modulated the electronic environment around the active sites, favoring the adsorption of intermediates during the oxygen evolution reaction (OER) process, which was verified by density functional theory calculations. A synergistic effect induced by the NiFe-LDH/SnS heterostructure promoted the OER activities in electrical, electronic, and energetic aspects. Consequently, the as-prepared NiFe-LDH/SnS electrocatalyst greatly improved the electrocatalytic performance, exhibiting 20% and 27% reductions in the overpotential and Tafel slope compared with those of pristine NiFe-LDH, respectively. The results provide a strategy for regulating NiFe-based electrocatalysts by using emerging 2D materials to enhance water-splitting efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI