搅拌摩擦焊
超参数
焊接
超参数优化
材料科学
分式析因设计
响应面法
多层感知器
过程变量
随机森林
人工神经网络
极限抗拉强度
外推法
转速
析因实验
复合材料
计算机科学
过程(计算)
机器学习
数学
机械工程
工程类
支持向量机
统计
操作系统
作者
Piotr Myśliwiec,Andrzej Kubit,Paulina Szawara
出处
期刊:Materials
[MDPI AG]
日期:2024-03-22
卷期号:17 (7): 1452-1452
被引量:4
摘要
This study optimized friction stir welding (FSW) parameters for 1.6 mm thick 2024T3 aluminum alloy sheets. A 3 × 3 factorial design was employed to explore tool rotation speeds (1100 to 1300 rpm) and welding speeds (140 to 180 mm/min). Static tensile tests revealed the joints' maximum strength at 87% relative to the base material. Hyperparameter optimization was conducted for machine learning (ML) models, including random forest and XGBoost, and multilayer perceptron artificial neural network (MLP-ANN) models, using grid search. Welding parameter optimization and extrapolation were then carried out, with final strength predictions analyzed using response surface methodology (RSM). The ML models achieved over 98% accuracy in parameter regression, demonstrating significant effectiveness in FSW process enhancement. Experimentally validated, optimized parameters resulted in an FSW joint efficiency of 93% relative to the base material. This outcome highlights the critical role of advanced analytical techniques in improving welding quality and efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI