ReHoGCNES-MDA: prediction of miRNA-disease associations using homogenous graph convolutional networks based on regular graph with random edge sampler

图形 计算机科学 随机图 GSM演进的增强数据速率 理论计算机科学 人工智能
作者
Yufang Zhang,Yanyi Chu,S. Lin,Yi Xiong,Dong‐Qing Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae103
摘要

Abstract Numerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we introduced a computational framework named ReHoGCNES, designed for prospective miRNA-disease association prediction (ReHoGCNES-MDA). This method constructs homogenous graph convolutional network with regular graph structure (ReHoGCN) encompassing disease similarity network, miRNA similarity network and known MDA network and then was tested on four experimental tasks. A random edge sampler strategy was utilized to expedite processes and diminish training complexity. Experimental results demonstrate that the proposed ReHoGCNES-MDA method outperforms both homogenous graph convolutional network and heterogeneous graph convolutional network with non-regular graph structure in all four tasks, which implicitly reveals steadily degree distribution of a graph does play an important role in enhancement of model performance. Besides, ReHoGCNES-MDA is superior to several machine learning algorithms and state-of-the-art methods on the MDA prediction. Furthermore, three case studies were conducted to further demonstrate the predictive ability of ReHoGCNES. Consequently, 93.3% (breast neoplasms), 90% (prostate neoplasms) and 93.3% (prostate neoplasms) of the top 30 forecasted miRNAs were validated by public databases. Hence, ReHoGCNES-MDA might serve as a dependable and beneficial model for predicting possible MDAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22nd发布了新的文献求助10
刚刚
苏silence发布了新的文献求助10
1秒前
搜集达人应助沙青亦采纳,获得10
1秒前
iron完成签到,获得积分10
1秒前
儒雅的豁完成签到,获得积分10
1秒前
小二郎应助寂灭之时采纳,获得10
1秒前
所所应助发发发采纳,获得30
1秒前
1秒前
量子星尘发布了新的文献求助20
2秒前
重楼远志发布了新的文献求助100
2秒前
2秒前
2秒前
辛勤月饼完成签到,获得积分10
3秒前
3秒前
zzz关注了科研通微信公众号
3秒前
4秒前
我是老大应助Chichi采纳,获得10
4秒前
肖坤发布了新的文献求助10
4秒前
情怀应助称心寒松采纳,获得10
5秒前
杨杨完成签到 ,获得积分10
5秒前
5秒前
思源应助张垚采纳,获得10
5秒前
炸鱼饼发布了新的文献求助10
5秒前
啦啦啦发布了新的文献求助10
5秒前
6秒前
6秒前
Wang完成签到,获得积分10
6秒前
鹂鹂复霖霖完成签到,获得积分10
6秒前
安菲尔德完成签到,获得积分10
6秒前
6秒前
精明人达发布了新的文献求助10
6秒前
6秒前
虎啸山河完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
gmjinfeng完成签到,获得积分0
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006