亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ReHoGCNES-MDA: prediction of miRNA-disease associations using homogenous graph convolutional networks based on regular graph with random edge sampler

图形 计算机科学 随机图 GSM演进的增强数据速率 理论计算机科学 人工智能
作者
Yufang Zhang,Yanyi Chu,S. Lin,Yi Xiong,Dong‐Qing Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae103
摘要

Abstract Numerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we introduced a computational framework named ReHoGCNES, designed for prospective miRNA-disease association prediction (ReHoGCNES-MDA). This method constructs homogenous graph convolutional network with regular graph structure (ReHoGCN) encompassing disease similarity network, miRNA similarity network and known MDA network and then was tested on four experimental tasks. A random edge sampler strategy was utilized to expedite processes and diminish training complexity. Experimental results demonstrate that the proposed ReHoGCNES-MDA method outperforms both homogenous graph convolutional network and heterogeneous graph convolutional network with non-regular graph structure in all four tasks, which implicitly reveals steadily degree distribution of a graph does play an important role in enhancement of model performance. Besides, ReHoGCNES-MDA is superior to several machine learning algorithms and state-of-the-art methods on the MDA prediction. Furthermore, three case studies were conducted to further demonstrate the predictive ability of ReHoGCNES. Consequently, 93.3% (breast neoplasms), 90% (prostate neoplasms) and 93.3% (prostate neoplasms) of the top 30 forecasted miRNAs were validated by public databases. Hence, ReHoGCNES-MDA might serve as a dependable and beneficial model for predicting possible MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
去晒月亮给去晒月亮的求助进行了留言
3秒前
4秒前
4秒前
lyy发布了新的文献求助10
8秒前
14秒前
19秒前
26秒前
30秒前
春江完成签到,获得积分10
31秒前
leo完成签到,获得积分10
31秒前
Focus_BG发布了新的文献求助10
35秒前
lyy完成签到,获得积分20
35秒前
36秒前
37秒前
爱静静应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
海风应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
彭于晏应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
所所应助稳重的小刺猬采纳,获得10
44秒前
gszy1975完成签到,获得积分10
45秒前
小红完成签到,获得积分10
46秒前
charming应助缓慢的烨伟采纳,获得10
49秒前
FashionBoy应助缓慢的烨伟采纳,获得10
49秒前
50秒前
背后半烟完成签到,获得积分10
51秒前
背后半烟发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
Nakacoke77完成签到,获得积分10
1分钟前
Qi完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助Qi采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948687
关于积分的说明 8541781
捐赠科研通 2624574
什么是DOI,文献DOI怎么找? 1436326
科研通“疑难数据库(出版商)”最低求助积分说明 665862
邀请新用户注册赠送积分活动 651796