ReHoGCNES-MDA: prediction of miRNA-disease associations using homogenous graph convolutional networks based on regular graph with random edge sampler

图形 计算机科学 随机图 GSM演进的增强数据速率 理论计算机科学 人工智能
作者
Yufang Zhang,Yanyi Chu,S. Lin,Yi Xiong,Dong‐Qing Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (2)
标识
DOI:10.1093/bib/bbae103
摘要

Abstract Numerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we introduced a computational framework named ReHoGCNES, designed for prospective miRNA-disease association prediction (ReHoGCNES-MDA). This method constructs homogenous graph convolutional network with regular graph structure (ReHoGCN) encompassing disease similarity network, miRNA similarity network and known MDA network and then was tested on four experimental tasks. A random edge sampler strategy was utilized to expedite processes and diminish training complexity. Experimental results demonstrate that the proposed ReHoGCNES-MDA method outperforms both homogenous graph convolutional network and heterogeneous graph convolutional network with non-regular graph structure in all four tasks, which implicitly reveals steadily degree distribution of a graph does play an important role in enhancement of model performance. Besides, ReHoGCNES-MDA is superior to several machine learning algorithms and state-of-the-art methods on the MDA prediction. Furthermore, three case studies were conducted to further demonstrate the predictive ability of ReHoGCNES. Consequently, 93.3% (breast neoplasms), 90% (prostate neoplasms) and 93.3% (prostate neoplasms) of the top 30 forecasted miRNAs were validated by public databases. Hence, ReHoGCNES-MDA might serve as a dependable and beneficial model for predicting possible MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助谷大喵唔采纳,获得10
刚刚
23发布了新的文献求助10
刚刚
简单的铃铛完成签到 ,获得积分10
1秒前
1秒前
1秒前
科研通AI2S应助体贴啤酒采纳,获得10
1秒前
2秒前
大模型应助Water103采纳,获得10
2秒前
3秒前
儒雅沛凝发布了新的文献求助10
3秒前
3秒前
DXXX发布了新的文献求助10
4秒前
小不溜完成签到 ,获得积分10
4秒前
王汉韬发布了新的文献求助10
4秒前
科研通AI2S应助咕噜仔采纳,获得20
4秒前
11111111完成签到,获得积分10
4秒前
NexusExplorer应助皮蛋瘦肉周采纳,获得10
4秒前
5秒前
zbearupz完成签到,获得积分10
5秒前
xiao发布了新的文献求助10
6秒前
7秒前
7秒前
conghuiqu完成签到,获得积分10
7秒前
Superman完成签到 ,获得积分10
7秒前
哈哈呀发布了新的文献求助10
7秒前
大模型应助Yuki0616采纳,获得10
7秒前
牛肉干发布了新的文献求助10
8秒前
赘婿应助木子采纳,获得10
8秒前
JERRY发布了新的文献求助10
8秒前
木桶人plus完成签到,获得积分10
8秒前
8秒前
啦啦发布了新的文献求助10
9秒前
歪比巴卜完成签到,获得积分10
9秒前
star完成签到 ,获得积分10
9秒前
风中以菱发布了新的文献求助10
9秒前
田様应助lbx采纳,获得10
9秒前
9秒前
成就幼荷发布了新的文献求助10
9秒前
zpbb完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672