Abstract 3525: Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence

癌症 医学 免疫学 计算生物学 生物 内科学
作者
Genwei Zhang,Jiewen Du,Xiangrui Gao,Tianyuan Wang,Zhenghui Wang,Qingxia Zhang,Tongren Liu,Dong Chen,Ruohan Zhu,Yalong Zhao,Chi Han Samson Li,Melvin Toh,Lipeng Lai
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3525-3525
标识
DOI:10.1158/1538-7445.am2024-3525
摘要

Abstract Background: The advent of immune checkpoint inhibitors has improved morbidity and mortality for some cancers, and recent breakthroughs in gene & cell therapy have shed light on curing some types of blood cancers. However, many cancers remain intractable and the development of novel, effective and safe therapies continue to be a priority. Cancer vaccines as a cancer immunotherapy approach has seen a resurgence in recent years, due to the success of mRNA vaccines for the COVID-19. However, the accurate prediction of immunogenicity of cancer vaccines remains elusive. Methods: Our models predict the probability of a given peptide derived from the protein of interest to be presented by MHC-I or MHC-II. For MHC-I antigen presentation model development, over 17 million entries in the dataset were collected from published literature and available databases, e.g., IEDB, with peptide lengths ranging from 8 to 11. The peptides were restricted to 150 unique MHC-I alleles. Similarly, ~4 million entries with peptide lengths ranging from 13 to 21 were collected for MHC-II antigen presentation model development, and the peptides were restricted to 19 unique MHC-II alleles. To develop advanced antigen presentation models, a language model was chosen as the backbone network and contrast learning was used to better discriminate the peptide-MHC match versus mismatch. Overall, both MHC-I and MHC-II presentation models were constructed with about 30 million parameters. To validate the model prediction accuracy, automated peptide synthesis and surface plasmon resonance (SPR) technologies were applied. Results: Using open-sourced data, our developed AI models surpassed the performance of state-of-the-art prediction algorithms, the latest versions of NetMHCpan and MixMHCpred, for both MHC-I and MHC-II antigen presentation. Furthermore, to validate the algorithm accuracy and the peptide immunogenicity, 28 predicted patentable peptides derived from mutated TP53 protein were synthesized and their binding to respective common HLA alleles were validated using SPR. We found that greater than 80% of the peptides display binding affinities that are stronger than the positive control, suggesting that AI significantly improves neoantigen peptide vaccine design. Conclusions: We developed advanced AI algorithms to rapidly design shared neoantigen T cell epitopes with predicted strong binding affinity to MHC-I and MHC-II. We envision that the epitopes predicted and designed by our AI algorithms possess great potential in advancing the field of off-the-shelf cancer vaccine development and hold the promise of significantly benefiting patients, once translated into the clinic. Citation Format: Genwei Zhang, Jiewen Du, Xiangrui Gao, Tianyuan Wang, Zhenghui Wang, Qingxia Zhang, Tongren Liu, Dong Chen, Ruohan Zhu, Yalong Zhao, Chi Han Samson Li, Melvin Toh, Lipeng Lai. Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3525.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小小吒儿发布了新的文献求助10
1秒前
充电宝应助lty采纳,获得10
1秒前
1秒前
小小元风完成签到,获得积分10
1秒前
爆米花应助西门子云采纳,获得10
2秒前
毛毛发布了新的文献求助10
2秒前
3秒前
虚幻哦哦完成签到,获得积分10
3秒前
聪明的书包完成签到 ,获得积分10
4秒前
好滴捏发布了新的文献求助10
4秒前
张浩发布了新的文献求助10
4秒前
4秒前
中和皇极应助Lzt采纳,获得30
5秒前
单向度的人完成签到,获得积分10
6秒前
无心的静枫完成签到,获得积分10
6秒前
刻苦黎云完成签到,获得积分10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
dongjy应助科研通管家采纳,获得200
8秒前
李健应助科研通管家采纳,获得10
8秒前
q1356478314应助科研通管家采纳,获得10
8秒前
小吴同志发布了新的文献求助10
8秒前
打打应助高骏伟采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
q1356478314应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662