Abstract 3525: Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence

癌症 医学 免疫学 计算生物学 生物 内科学
作者
Genwei Zhang,Jiewen Du,Xiangrui Gao,Tianyuan Wang,Zhenghui Wang,Qingxia Zhang,Tongren Liu,Dong Chen,Ruohan Zhu,Yalong Zhao,Chi Han Samson Li,Melvin Toh,Lipeng Lai
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3525-3525
标识
DOI:10.1158/1538-7445.am2024-3525
摘要

Abstract Background: The advent of immune checkpoint inhibitors has improved morbidity and mortality for some cancers, and recent breakthroughs in gene & cell therapy have shed light on curing some types of blood cancers. However, many cancers remain intractable and the development of novel, effective and safe therapies continue to be a priority. Cancer vaccines as a cancer immunotherapy approach has seen a resurgence in recent years, due to the success of mRNA vaccines for the COVID-19. However, the accurate prediction of immunogenicity of cancer vaccines remains elusive. Methods: Our models predict the probability of a given peptide derived from the protein of interest to be presented by MHC-I or MHC-II. For MHC-I antigen presentation model development, over 17 million entries in the dataset were collected from published literature and available databases, e.g., IEDB, with peptide lengths ranging from 8 to 11. The peptides were restricted to 150 unique MHC-I alleles. Similarly, ~4 million entries with peptide lengths ranging from 13 to 21 were collected for MHC-II antigen presentation model development, and the peptides were restricted to 19 unique MHC-II alleles. To develop advanced antigen presentation models, a language model was chosen as the backbone network and contrast learning was used to better discriminate the peptide-MHC match versus mismatch. Overall, both MHC-I and MHC-II presentation models were constructed with about 30 million parameters. To validate the model prediction accuracy, automated peptide synthesis and surface plasmon resonance (SPR) technologies were applied. Results: Using open-sourced data, our developed AI models surpassed the performance of state-of-the-art prediction algorithms, the latest versions of NetMHCpan and MixMHCpred, for both MHC-I and MHC-II antigen presentation. Furthermore, to validate the algorithm accuracy and the peptide immunogenicity, 28 predicted patentable peptides derived from mutated TP53 protein were synthesized and their binding to respective common HLA alleles were validated using SPR. We found that greater than 80% of the peptides display binding affinities that are stronger than the positive control, suggesting that AI significantly improves neoantigen peptide vaccine design. Conclusions: We developed advanced AI algorithms to rapidly design shared neoantigen T cell epitopes with predicted strong binding affinity to MHC-I and MHC-II. We envision that the epitopes predicted and designed by our AI algorithms possess great potential in advancing the field of off-the-shelf cancer vaccine development and hold the promise of significantly benefiting patients, once translated into the clinic. Citation Format: Genwei Zhang, Jiewen Du, Xiangrui Gao, Tianyuan Wang, Zhenghui Wang, Qingxia Zhang, Tongren Liu, Dong Chen, Ruohan Zhu, Yalong Zhao, Chi Han Samson Li, Melvin Toh, Lipeng Lai. Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3525.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助HUAN采纳,获得10
刚刚
ltr2014发布了新的文献求助10
刚刚
踏实豪英发布了新的文献求助10
刚刚
1秒前
啾啾完成签到,获得积分10
1秒前
PCEEN完成签到,获得积分10
2秒前
2秒前
PUTIDAXIAN发布了新的文献求助30
3秒前
潇洒的诗桃应助sluck采纳,获得10
3秒前
3秒前
禁止焦虑发布了新的文献求助10
4秒前
是莉莉娅完成签到,获得积分10
4秒前
干秋寒发布了新的文献求助10
5秒前
祖诗云应助lambda采纳,获得30
5秒前
夜微醉完成签到,获得积分10
6秒前
Brian关注了科研通微信公众号
8秒前
9秒前
9秒前
领导范儿应助ltr2014采纳,获得10
10秒前
1111完成签到,获得积分10
10秒前
科研通AI2S应助lanmo采纳,获得10
13秒前
13秒前
杳鸢应助闪闪不言采纳,获得10
13秒前
14秒前
Orange应助丿小智灬采纳,获得10
14秒前
Alan完成签到,获得积分10
15秒前
mingyue应助老魏老魏采纳,获得30
15秒前
香蕉觅云应助墨aizhan采纳,获得10
15秒前
无奈完成签到,获得积分10
15秒前
16秒前
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
16秒前
干秋寒完成签到,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258334
求助须知:如何正确求助?哪些是违规求助? 2900116
关于积分的说明 8309137
捐赠科研通 2569374
什么是DOI,文献DOI怎么找? 1395671
科研通“疑难数据库(出版商)”最低求助积分说明 653188
邀请新用户注册赠送积分活动 631121