Abstract 3525: Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence

癌症 医学 免疫学 计算生物学 生物 内科学
作者
Genwei Zhang,Jiewen Du,Xiangrui Gao,Tianyuan Wang,Zhenghui Wang,Qingxia Zhang,Tongren Liu,Dong Chen,Ruohan Zhu,Yalong Zhao,Chi Han Samson Li,Melvin Toh,Lipeng Lai
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3525-3525
标识
DOI:10.1158/1538-7445.am2024-3525
摘要

Abstract Background: The advent of immune checkpoint inhibitors has improved morbidity and mortality for some cancers, and recent breakthroughs in gene & cell therapy have shed light on curing some types of blood cancers. However, many cancers remain intractable and the development of novel, effective and safe therapies continue to be a priority. Cancer vaccines as a cancer immunotherapy approach has seen a resurgence in recent years, due to the success of mRNA vaccines for the COVID-19. However, the accurate prediction of immunogenicity of cancer vaccines remains elusive. Methods: Our models predict the probability of a given peptide derived from the protein of interest to be presented by MHC-I or MHC-II. For MHC-I antigen presentation model development, over 17 million entries in the dataset were collected from published literature and available databases, e.g., IEDB, with peptide lengths ranging from 8 to 11. The peptides were restricted to 150 unique MHC-I alleles. Similarly, ~4 million entries with peptide lengths ranging from 13 to 21 were collected for MHC-II antigen presentation model development, and the peptides were restricted to 19 unique MHC-II alleles. To develop advanced antigen presentation models, a language model was chosen as the backbone network and contrast learning was used to better discriminate the peptide-MHC match versus mismatch. Overall, both MHC-I and MHC-II presentation models were constructed with about 30 million parameters. To validate the model prediction accuracy, automated peptide synthesis and surface plasmon resonance (SPR) technologies were applied. Results: Using open-sourced data, our developed AI models surpassed the performance of state-of-the-art prediction algorithms, the latest versions of NetMHCpan and MixMHCpred, for both MHC-I and MHC-II antigen presentation. Furthermore, to validate the algorithm accuracy and the peptide immunogenicity, 28 predicted patentable peptides derived from mutated TP53 protein were synthesized and their binding to respective common HLA alleles were validated using SPR. We found that greater than 80% of the peptides display binding affinities that are stronger than the positive control, suggesting that AI significantly improves neoantigen peptide vaccine design. Conclusions: We developed advanced AI algorithms to rapidly design shared neoantigen T cell epitopes with predicted strong binding affinity to MHC-I and MHC-II. We envision that the epitopes predicted and designed by our AI algorithms possess great potential in advancing the field of off-the-shelf cancer vaccine development and hold the promise of significantly benefiting patients, once translated into the clinic. Citation Format: Genwei Zhang, Jiewen Du, Xiangrui Gao, Tianyuan Wang, Zhenghui Wang, Qingxia Zhang, Tongren Liu, Dong Chen, Ruohan Zhu, Yalong Zhao, Chi Han Samson Li, Melvin Toh, Lipeng Lai. Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3525.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
cxg应助冷艳的忆霜采纳,获得50
刚刚
Owen应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
wfkjxywdq完成签到,获得积分10
刚刚
美好斓发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
情怀应助ganlixuan采纳,获得30
4秒前
ningjianing发布了新的文献求助10
5秒前
5秒前
福福yu完成签到,获得积分10
6秒前
科研通AI6应助oo采纳,获得10
7秒前
7秒前
刘一一完成签到,获得积分10
7秒前
hehe发布了新的文献求助10
7秒前
落寞的元菱完成签到,获得积分10
7秒前
无限莫言发布了新的文献求助10
8秒前
8秒前
9秒前
石珊的豆豆完成签到,获得积分10
9秒前
张三毛完成签到,获得积分10
11秒前
科研孙完成签到,获得积分10
12秒前
科研通AI6应助吴哈哈采纳,获得10
13秒前
13秒前
鸡丝肉酱子完成签到,获得积分10
13秒前
海峰荣发布了新的文献求助10
13秒前
14秒前
缥缈刺猬发布了新的文献求助10
14秒前
儒雅的蜜粉完成签到,获得积分10
15秒前
15秒前
15秒前
元小夏发布了新的文献求助20
15秒前
如果天气好的话完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259688
求助须知:如何正确求助?哪些是违规求助? 4421251
关于积分的说明 13762275
捐赠科研通 4295121
什么是DOI,文献DOI怎么找? 2356733
邀请新用户注册赠送积分活动 1353120
关于科研通互助平台的介绍 1314279