Abstract 3525: Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence

癌症 医学 免疫学 计算生物学 生物 内科学
作者
Genwei Zhang,Jiewen Du,Xiangrui Gao,Tianyuan Wang,Zhenghui Wang,Qingxia Zhang,Tongren Liu,Dong Chen,Ruohan Zhu,Yalong Zhao,Chi Han Samson Li,Melvin Toh,Lipeng Lai
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3525-3525
标识
DOI:10.1158/1538-7445.am2024-3525
摘要

Abstract Background: The advent of immune checkpoint inhibitors has improved morbidity and mortality for some cancers, and recent breakthroughs in gene & cell therapy have shed light on curing some types of blood cancers. However, many cancers remain intractable and the development of novel, effective and safe therapies continue to be a priority. Cancer vaccines as a cancer immunotherapy approach has seen a resurgence in recent years, due to the success of mRNA vaccines for the COVID-19. However, the accurate prediction of immunogenicity of cancer vaccines remains elusive. Methods: Our models predict the probability of a given peptide derived from the protein of interest to be presented by MHC-I or MHC-II. For MHC-I antigen presentation model development, over 17 million entries in the dataset were collected from published literature and available databases, e.g., IEDB, with peptide lengths ranging from 8 to 11. The peptides were restricted to 150 unique MHC-I alleles. Similarly, ~4 million entries with peptide lengths ranging from 13 to 21 were collected for MHC-II antigen presentation model development, and the peptides were restricted to 19 unique MHC-II alleles. To develop advanced antigen presentation models, a language model was chosen as the backbone network and contrast learning was used to better discriminate the peptide-MHC match versus mismatch. Overall, both MHC-I and MHC-II presentation models were constructed with about 30 million parameters. To validate the model prediction accuracy, automated peptide synthesis and surface plasmon resonance (SPR) technologies were applied. Results: Using open-sourced data, our developed AI models surpassed the performance of state-of-the-art prediction algorithms, the latest versions of NetMHCpan and MixMHCpred, for both MHC-I and MHC-II antigen presentation. Furthermore, to validate the algorithm accuracy and the peptide immunogenicity, 28 predicted patentable peptides derived from mutated TP53 protein were synthesized and their binding to respective common HLA alleles were validated using SPR. We found that greater than 80% of the peptides display binding affinities that are stronger than the positive control, suggesting that AI significantly improves neoantigen peptide vaccine design. Conclusions: We developed advanced AI algorithms to rapidly design shared neoantigen T cell epitopes with predicted strong binding affinity to MHC-I and MHC-II. We envision that the epitopes predicted and designed by our AI algorithms possess great potential in advancing the field of off-the-shelf cancer vaccine development and hold the promise of significantly benefiting patients, once translated into the clinic. Citation Format: Genwei Zhang, Jiewen Du, Xiangrui Gao, Tianyuan Wang, Zhenghui Wang, Qingxia Zhang, Tongren Liu, Dong Chen, Ruohan Zhu, Yalong Zhao, Chi Han Samson Li, Melvin Toh, Lipeng Lai. Towards the efficient design of shared neoantigen peptide cancer vaccines using artificial intelligence [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3525.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lsj发布了新的文献求助10
刚刚
刚刚
刚刚
Akim应助糟糕的铁锤采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
wure10发布了新的文献求助10
4秒前
4秒前
ZG完成签到,获得积分10
4秒前
DHMO完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
大胆听莲发布了新的文献求助10
5秒前
6秒前
7秒前
笨笨醉薇发布了新的文献求助10
8秒前
柔弱绝施发布了新的文献求助10
8秒前
8秒前
英姑应助顺利的曼寒采纳,获得10
8秒前
山梦完成签到 ,获得积分10
8秒前
糟糕的铁锤应助文件撤销了驳回
8秒前
深情安青应助学术laji采纳,获得10
9秒前
juphen2发布了新的文献求助10
9秒前
无花果应助勤奋的千山采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
HEROER完成签到,获得积分20
10秒前
10秒前
我是老大应助biggun采纳,获得10
10秒前
huangyulin2003完成签到,获得积分10
10秒前
10秒前
11发布了新的文献求助30
10秒前
plant完成签到,获得积分0
10秒前
啊发完成签到,获得积分20
10秒前
典雅君浩发布了新的文献求助10
11秒前
斯文败类应助Nova采纳,获得10
11秒前
Rec发布了新的文献求助10
11秒前
机智冬瓜发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995