Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 基因 大地测量学 嵌入 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风少年完成签到 ,获得积分10
1秒前
半颗糖完成签到,获得积分10
1秒前
淡淡明辉完成签到,获得积分10
1秒前
Zo完成签到,获得积分10
2秒前
乐乐茶完成签到,获得积分10
2秒前
mori完成签到,获得积分10
2秒前
孤独的问凝完成签到,获得积分10
3秒前
5秒前
liuchao完成签到,获得积分10
5秒前
曼夭非夭完成签到,获得积分10
6秒前
秦之之完成签到 ,获得积分10
6秒前
一只胖赤赤完成签到 ,获得积分10
6秒前
Andrew02完成签到,获得积分10
7秒前
养猪人完成签到,获得积分10
7秒前
鲤鱼怀绿完成签到,获得积分10
7秒前
乐乐茶发布了新的文献求助10
8秒前
三片叶子1453完成签到,获得积分10
8秒前
zxy应助温暖代芙采纳,获得10
8秒前
9秒前
Underwood111完成签到,获得积分10
9秒前
单纯的爆米花完成签到,获得积分10
10秒前
吕圆圆圆啊完成签到,获得积分10
10秒前
cdd完成签到,获得积分10
10秒前
ys118完成签到 ,获得积分10
11秒前
CGBY完成签到 ,获得积分10
11秒前
12秒前
AteeqBaloch完成签到,获得积分10
12秒前
12秒前
吉吉国王完成签到,获得积分10
15秒前
moyacheung完成签到,获得积分10
15秒前
ycool完成签到 ,获得积分10
15秒前
内向东蒽完成签到 ,获得积分10
15秒前
15秒前
勤奋的立果完成签到 ,获得积分10
15秒前
孝艺完成签到 ,获得积分10
16秒前
18秒前
19秒前
HCKACECE完成签到 ,获得积分10
19秒前
流火完成签到,获得积分10
19秒前
舒适亦凝发布了新的文献求助10
20秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434873
求助须知:如何正确求助?哪些是违规求助? 3032242
关于积分的说明 8944680
捐赠科研通 2720152
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689735
邀请新用户注册赠送积分活动 685882