Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 大地测量学 嵌入 基因 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
山东阿文完成签到,获得积分20
刚刚
niko发布了新的文献求助10
刚刚
niko发布了新的文献求助10
刚刚
niko发布了新的文献求助10
1秒前
niko发布了新的文献求助10
1秒前
niko发布了新的文献求助10
1秒前
欲上青天揽关注了科研通微信公众号
1秒前
niko发布了新的文献求助10
1秒前
小蘑菇应助CGCG采纳,获得10
1秒前
niko发布了新的文献求助10
1秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助30
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
2秒前
英俊的铭应助reighnfjzkv采纳,获得10
2秒前
niko发布了新的文献求助10
2秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090