Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 大地测量学 嵌入 基因 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18922406869发布了新的文献求助10
1秒前
houxufeng发布了新的文献求助10
1秒前
云天明发布了新的文献求助10
1秒前
刘光正完成签到,获得积分10
1秒前
1秒前
1秒前
chen完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
3秒前
沧化完成签到,获得积分10
3秒前
3秒前
自挂东南枝完成签到,获得积分10
3秒前
4秒前
归尘发布了新的文献求助30
4秒前
爱吃香菜发布了新的文献求助10
4秒前
玄学大哥完成签到,获得积分10
5秒前
BSDL完成签到,获得积分20
5秒前
ruyunlong发布了新的文献求助10
5秒前
黎星发布了新的文献求助10
5秒前
6秒前
6秒前
赵婧完成签到,获得积分10
6秒前
大胆的幻巧完成签到,获得积分10
7秒前
脑洞疼应助刘松采纳,获得10
7秒前
7秒前
8秒前
无私语儿完成签到,获得积分10
8秒前
bao完成签到,获得积分10
8秒前
赵婧发布了新的文献求助10
9秒前
ydd发布了新的文献求助10
9秒前
龚培军发布了新的文献求助10
9秒前
务实飞荷完成签到,获得积分10
10秒前
hkh发布了新的文献求助10
10秒前
田様应助Gpu_broken采纳,获得10
11秒前
____完成签到,获得积分10
11秒前
猪猪hero发布了新的文献求助10
11秒前
11秒前
无花果应助曾云璐采纳,获得10
12秒前
Owen应助ohnk采纳,获得10
12秒前
蛋白激酶完成签到,获得积分10
13秒前
扎心应助油炸丸子采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751