Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 大地测量学 嵌入 基因 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lapin完成签到,获得积分10
1秒前
自由逐风完成签到,获得积分10
1秒前
juzi完成签到 ,获得积分10
1秒前
4秒前
小蘑菇噢噢噢完成签到,获得积分10
5秒前
好困发布了新的文献求助30
7秒前
ly普鲁卡因完成签到,获得积分10
7秒前
荀连虎完成签到,获得积分20
9秒前
sincere完成签到,获得积分10
9秒前
foregan完成签到,获得积分10
10秒前
发发旦旦完成签到,获得积分10
10秒前
Lesile发布了新的文献求助10
10秒前
吃棒棒糖的杀手完成签到,获得积分10
10秒前
11秒前
酷炫的大碗完成签到,获得积分10
11秒前
David完成签到,获得积分10
13秒前
团团完成签到 ,获得积分10
13秒前
chemzhh完成签到,获得积分10
13秒前
wuludie应助11采纳,获得10
15秒前
David发布了新的文献求助10
16秒前
奋斗的妙海完成签到 ,获得积分0
16秒前
17秒前
淡然语芙完成签到,获得积分10
17秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
18秒前
健壮的花瓣完成签到 ,获得积分10
18秒前
18秒前
Kelly1426完成签到,获得积分10
18秒前
爆米花应助科研搬运工采纳,获得10
19秒前
shane发布了新的文献求助30
19秒前
了了完成签到,获得积分10
20秒前
WZH完成签到 ,获得积分10
20秒前
乘舟江行发布了新的文献求助10
22秒前
今天开心吗完成签到 ,获得积分10
22秒前
chunyan_sysu发布了新的文献求助10
24秒前
Richard完成签到 ,获得积分10
25秒前
阿达完成签到,获得积分20
26秒前
RayLam完成签到,获得积分10
27秒前
ceeray23应助科研通管家采纳,获得10
28秒前
ceeray23应助科研通管家采纳,获得10
28秒前
ceeray23应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917