Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 基因 大地测量学 嵌入 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅剑寒发布了新的文献求助10
刚刚
dll完成签到,获得积分10
刚刚
任性铅笔完成签到,获得积分10
1秒前
2秒前
所所应助求毕业采纳,获得10
2秒前
2秒前
2秒前
dll发布了新的文献求助10
3秒前
3秒前
3秒前
扬帆远航完成签到,获得积分10
4秒前
草原狼完成签到,获得积分10
5秒前
spc68应助解紫雪采纳,获得10
5秒前
Akim应助昏睡的飞雪采纳,获得10
5秒前
Lucas应助Chnious采纳,获得10
6秒前
无花果完成签到 ,获得积分10
6秒前
沉默的驳发布了新的文献求助10
7秒前
chenshihao发布了新的文献求助10
7秒前
JamesPei应助biu采纳,获得10
8秒前
科研民工发布了新的文献求助10
8秒前
lancelot完成签到,获得积分10
8秒前
111发布了新的文献求助10
9秒前
安详如风完成签到,获得积分10
10秒前
Lucas应助绿豆汤采纳,获得10
10秒前
11秒前
伍六柒完成签到,获得积分10
12秒前
爆米花应助茉莉花采纳,获得10
12秒前
mmy完成签到,获得积分20
12秒前
14秒前
高兴515发布了新的文献求助10
14秒前
浅汐发布了新的文献求助10
14秒前
nan关闭了nan文献求助
14秒前
15秒前
15秒前
16秒前
16秒前
Yh_alive发布了新的文献求助20
18秒前
量子星尘发布了新的文献求助10
18秒前
小刘发布了新的文献求助10
19秒前
ZzoKk发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735472
求助须知:如何正确求助?哪些是违规求助? 5360845
关于积分的说明 15330104
捐赠科研通 4879619
什么是DOI,文献DOI怎么找? 2622182
邀请新用户注册赠送积分活动 1571280
关于科研通互助平台的介绍 1528116