Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 大地测量学 嵌入 基因 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
QAQSS完成签到 ,获得积分10
1秒前
偶做前堂客完成签到 ,获得积分10
4秒前
静静完成签到 ,获得积分10
5秒前
紫婧完成签到,获得积分10
5秒前
BowieHuang应助活力书包采纳,获得10
5秒前
wang完成签到,获得积分10
7秒前
2010完成签到,获得积分10
8秒前
无脚鸟完成签到,获得积分10
8秒前
9秒前
英姑应助Lumos采纳,获得10
9秒前
terryok完成签到 ,获得积分10
12秒前
von完成签到,获得积分10
13秒前
历史真相完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
机灵的安南完成签到 ,获得积分10
17秒前
SY15732023811完成签到 ,获得积分10
18秒前
梅特卡夫完成签到,获得积分10
19秒前
燕燕完成签到,获得积分10
21秒前
酷炫书芹完成签到 ,获得积分10
22秒前
不扯先生完成签到,获得积分10
22秒前
23秒前
23秒前
wbb完成签到 ,获得积分10
23秒前
嘻嗷完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
27秒前
Gloria完成签到 ,获得积分10
28秒前
yyy完成签到 ,获得积分10
29秒前
30秒前
碗在水中央完成签到 ,获得积分10
30秒前
争气完成签到 ,获得积分10
32秒前
Xiaoyisheng完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
35秒前
希达通完成签到 ,获得积分10
38秒前
alvis完成签到 ,获得积分10
38秒前
39秒前
哥哥完成签到 ,获得积分10
42秒前
欢呼妙菱完成签到,获得积分10
44秒前
忽晚完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833