清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model

乙酰化 联营 计算机科学 水准点(测量) 卷积神经网络 机器学习 文字2vec 深度学习 支持向量机 人工智能 生物化学 生物 大地测量学 嵌入 基因 地理
作者
Jinsong Ke,Jianmei Zhao,Hongfei Li,Lei Yuan,Guanghui Dong,Guohua Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108330-108330 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108330
摘要

N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
ceeray23发布了新的文献求助20
23秒前
JESI完成签到,获得积分10
31秒前
sube完成签到 ,获得积分10
32秒前
jesi完成签到,获得积分10
38秒前
赵芳完成签到,获得积分10
53秒前
Cassie关注了科研通微信公众号
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
缓慢雨南发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
kgf完成签到 ,获得积分20
1分钟前
曹国庆完成签到 ,获得积分10
1分钟前
orixero应助ceeray23采纳,获得20
2分钟前
斯文败类应助ceeray23采纳,获得20
2分钟前
2分钟前
2分钟前
袁青寒发布了新的文献求助10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
热带蚂蚁完成签到 ,获得积分10
2分钟前
云锋完成签到,获得积分10
2分钟前
Cassie完成签到,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
jsinm-thyroid完成签到 ,获得积分10
3分钟前
qinghe完成签到 ,获得积分10
3分钟前
铁瓜李完成签到 ,获得积分10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
4分钟前
Japrin完成签到,获得积分10
4分钟前
霜降完成签到,获得积分10
4分钟前
5分钟前
abc完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685622
关于积分的说明 14838712
捐赠科研通 4672749
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965