Integrative metabolic and cellular organelle engineering for improving biosynthesis of flavonoid compounds in saccharomyces cerevisiae

代谢工程 柚皮素 类黄酮 生物化学 酿酒酵母 化学 葡萄酒 酵母 生物合成 花青素 食品科学 抗氧化剂
作者
Chao Wang,Wang Ma,Luwei Xu,Zhiyun Wei,Ke Tang,Jingwen Zhou,Jian Chen
出处
期刊:Food bioscience [Elsevier]
卷期号:60: 103996-103996 被引量:1
标识
DOI:10.1016/j.fbio.2024.103996
摘要

Flavonoids, including dihydroflavonols and anthocyanins, are phenolic compounds with significant biological activity, playing a crucial role in the sensory characteristics and health benefits of wine. In this study, we selected the naringenin-producing strain HB52 (Saccharomyces cerevisiae) as the starting strain and introduced synthetic pathways for dihydroflavonols and anthocyanins, achieving de novo synthesis of various flavonoid compounds. To further optimize flavonoid production, we employed several strategies, including overexpressing 5-enolpyruvylshikimate 3-phosphate synthase to enhance metabolic flux, integrating NADPH regeneration genes, and using citric acid/isocitric acid transporter genes to increase the levels of cofactors. Additionally, organelle engineering was utilized to strengthen the β-oxidation pathway, thereby elevating the levels of precursors such as acetyl-coenzyme A (CoA) and malonyl-CoA. Engineered strains significantly improved their ability to synthesize various flavonoids directly from glucose. In the final engineered strains, the production levels of NAR, DHQ, and DHM in the dihydroflavonol-engineered strains reached 379.2 mg/L, 231.3 mg/L, and 284.8 mg/L, respectively. The anthocyanin-engineered strains achieved the highest yield of anthocyanin synthesized from glucose in S. cerevisiae, reaching 45.7 mg/L (33.4 mg/L for C3G and 12.3 mg/L for D3G). This study highlights the potential of metabolic and organelle engineering in S. cerevisiae to increase flavonoid production, offering new prospects for enhancing sensory quality and health benefits in the wine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是瓜瓜不完成签到,获得积分10
刚刚
刚刚
1秒前
YUZU发布了新的文献求助10
1秒前
王文茹发布了新的文献求助10
1秒前
2秒前
噗宝叽发布了新的文献求助10
2秒前
爆米花应助桐炫采纳,获得10
2秒前
3秒前
谢紫玲发布了新的文献求助10
3秒前
酷波er应助落后凝莲采纳,获得10
4秒前
beautyy完成签到,获得积分10
4秒前
慕雅青完成签到,获得积分10
4秒前
撒大苏打完成签到,获得积分10
4秒前
勤奋的鱼完成签到,获得积分10
4秒前
Jasper应助啾啾采纳,获得10
4秒前
顺利的机器猫完成签到,获得积分10
4秒前
5秒前
研友_VZG7GZ应助七里笙采纳,获得10
6秒前
鳗鱼焦发布了新的文献求助10
6秒前
beautyy发布了新的文献求助10
7秒前
7秒前
土豆发布了新的文献求助10
7秒前
坚定的雁完成签到 ,获得积分10
8秒前
慧慧发布了新的文献求助10
8秒前
YUZU完成签到,获得积分10
9秒前
9秒前
9秒前
Extrashadowly完成签到,获得积分10
10秒前
香蕉觅云应助miaomiao采纳,获得10
10秒前
10秒前
英俊的铭应助叭叭采纳,获得10
11秒前
南乾硕发布了新的文献求助10
11秒前
噗宝叽完成签到,获得积分10
12秒前
大慧慧发布了新的文献求助10
12秒前
科研通AI2S应助谢紫玲采纳,获得10
12秒前
LZHWSND完成签到,获得积分10
12秒前
rtx00完成签到,获得积分10
13秒前
科研狗关注了科研通微信公众号
14秒前
科研通AI2S应助ardejiang采纳,获得10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233861
求助须知:如何正确求助?哪些是违规求助? 2880343
关于积分的说明 8214733
捐赠科研通 2547792
什么是DOI,文献DOI怎么找? 1377216
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623213