Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep reinforcement learning approach

强化学习 计算机科学 钢筋 人工智能 人机交互 心理学 社会心理学
作者
Baojiang Li,Shengjie Qiu,Jibo Bai,Bin Wang,Zhekai Zhang,Liang Li,Haiyan Wang,Xichao Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111847-111847 被引量:6
标识
DOI:10.1016/j.knosys.2024.111847
摘要

When a multi-fingered dexterous hand interacts with the external environment, it encounters various challenges, including the utilization of complex control techniques and the intricate coordination of finger motion sequences. Previous studies have primarily concentrated on investigating the interaction between multi-fingered dexterous hands and external objects, usually using model-based control or model-free reinforcement learning techniques. However, during practical implementation, various constraining factors are encountered, such as intricate modeling and limited interaction capabilities. In practical scenarios, the utilization of multi-fingered dexterous hands is imperative for the swift and efficient execution of a wide range of interactive tasks, including but not limited to throwing a ball and playing rock-paper-scissors. These tasks require skilled manual dexterity to demonstrate both precise control and quick responsiveness. To tackle this issue, we propose a hierarchical control approach for multi-fingered dexterous hands with interactive functionalities, utilizing model-free deep reinforcement learning. The complex interaction task is decomposed into simple sub-tasks using hierarchical strategy and action primitive decomposition, which effectively reduces the complexity of the action space, and achieves the motion planning and end finger trajectory control of dexterous hand. In a simulated environment, the aforementioned method has successfully executed interactive tasks, including ball throwing and playing rock-paper-scissors. It achieved a maximum normalized reward of 0.83 and an 84% success rate. These results are noteworthy in terms of both control accuracy and response speed. This study offers novel insights into the effective resolution of the intricate challenges associated with interactions involving multi-fingered dexterous hands and human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
巴拉巴拉小魔仙完成签到,获得积分10
1秒前
顾矜应助Uuu采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
宁哥发布了新的文献求助10
3秒前
wzswzs发布了新的文献求助10
3秒前
cloverdown发布了新的文献求助10
4秒前
一朵海棠花完成签到,获得积分10
4秒前
qxqy6678发布了新的文献求助10
4秒前
达西西完成签到 ,获得积分10
4秒前
一一一关注了科研通微信公众号
5秒前
5秒前
6秒前
6秒前
不会起名发布了新的文献求助10
6秒前
踏实数据线完成签到 ,获得积分10
6秒前
凉茶发布了新的文献求助10
7秒前
7秒前
7秒前
酷波er应助橘皮灯灯采纳,获得10
7秒前
8秒前
8秒前
李爱国应助wuqs采纳,获得10
8秒前
HUYAOWEI完成签到,获得积分10
8秒前
科研通AI2S应助游江大瓠采纳,获得10
9秒前
糊涂的天晴完成签到,获得积分10
9秒前
愉快的不尤完成签到 ,获得积分10
9秒前
共享精神应助诚心的道罡采纳,获得10
9秒前
tb168tb完成签到,获得积分10
9秒前
9秒前
羽言发布了新的文献求助10
9秒前
huchen完成签到,获得积分10
10秒前
Poisomber发布了新的文献求助10
10秒前
王林涛发布了新的文献求助10
11秒前
海盐咸喵发布了新的文献求助10
11秒前
hustzwqq发布了新的文献求助10
11秒前
shijie发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534