亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep reinforcement learning approach

强化学习 计算机科学 钢筋 人工智能 人机交互 心理学 社会心理学
作者
Baojiang Li,Shengjie Qiu,Jibo Bai,Bin Wang,Zhekai Zhang,Liang Li,Haiyan Wang,Xichao Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111847-111847 被引量:2
标识
DOI:10.1016/j.knosys.2024.111847
摘要

When a multi-fingered dexterous hand interacts with the external environment, it encounters various challenges, including the utilization of complex control techniques and the intricate coordination of finger motion sequences. Previous studies have primarily concentrated on investigating the interaction between multi-fingered dexterous hands and external objects, usually using model-based control or model-free reinforcement learning techniques. However, during practical implementation, various constraining factors are encountered, such as intricate modeling and limited interaction capabilities. In practical scenarios, the utilization of multi-fingered dexterous hands is imperative for the swift and efficient execution of a wide range of interactive tasks, including but not limited to throwing a ball and playing rock-paper-scissors. These tasks require skilled manual dexterity to demonstrate both precise control and quick responsiveness. To tackle this issue, we propose a hierarchical control approach for multi-fingered dexterous hands with interactive functionalities, utilizing model-free deep reinforcement learning. The complex interaction task is decomposed into simple sub-tasks using hierarchical strategy and action primitive decomposition, which effectively reduces the complexity of the action space, and achieves the motion planning and end finger trajectory control of dexterous hand. In a simulated environment, the aforementioned method has successfully executed interactive tasks, including ball throwing and playing rock-paper-scissors. It achieved a maximum normalized reward of 0.83 and an 84% success rate. These results are noteworthy in terms of both control accuracy and response speed. This study offers novel insights into the effective resolution of the intricate challenges associated with interactions involving multi-fingered dexterous hands and human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
沿途有你完成签到 ,获得积分10
41秒前
wangwei完成签到 ,获得积分10
1分钟前
Excalibur应助八二力采纳,获得10
1分钟前
yoyo发布了新的文献求助20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
竹夕完成签到 ,获得积分10
1分钟前
矢思然完成签到,获得积分10
1分钟前
玛琳卡迪马完成签到,获得积分10
2分钟前
嗯哼应助yoyo采纳,获得20
2分钟前
科目三应助zxcvb666采纳,获得10
2分钟前
科研通AI2S应助zxcvb666采纳,获得80
2分钟前
3分钟前
blm发布了新的文献求助10
3分钟前
小二郎应助blm采纳,获得10
3分钟前
无花果应助三点水采纳,获得10
4分钟前
5分钟前
三点水发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
善学以致用应助三点水采纳,获得10
6分钟前
6分钟前
百里幻竹发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
sniffgo完成签到 ,获得积分10
7分钟前
LioXH发布了新的文献求助10
9分钟前
LioXH完成签到 ,获得积分10
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
chiyudoubao完成签到,获得积分10
10分钟前
10分钟前
11分钟前
情怀应助五香采纳,获得10
11分钟前
五香完成签到,获得积分10
12分钟前
12分钟前
五香发布了新的文献求助10
12分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867