Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep reinforcement learning approach

强化学习 计算机科学 钢筋 人工智能 人机交互 心理学 社会心理学
作者
Baojiang Li,Shengjie Qiu,Jibo Bai,Bin Wang,Zhekai Zhang,Liang Li,Haiyan Wang,Xichao Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111847-111847 被引量:6
标识
DOI:10.1016/j.knosys.2024.111847
摘要

When a multi-fingered dexterous hand interacts with the external environment, it encounters various challenges, including the utilization of complex control techniques and the intricate coordination of finger motion sequences. Previous studies have primarily concentrated on investigating the interaction between multi-fingered dexterous hands and external objects, usually using model-based control or model-free reinforcement learning techniques. However, during practical implementation, various constraining factors are encountered, such as intricate modeling and limited interaction capabilities. In practical scenarios, the utilization of multi-fingered dexterous hands is imperative for the swift and efficient execution of a wide range of interactive tasks, including but not limited to throwing a ball and playing rock-paper-scissors. These tasks require skilled manual dexterity to demonstrate both precise control and quick responsiveness. To tackle this issue, we propose a hierarchical control approach for multi-fingered dexterous hands with interactive functionalities, utilizing model-free deep reinforcement learning. The complex interaction task is decomposed into simple sub-tasks using hierarchical strategy and action primitive decomposition, which effectively reduces the complexity of the action space, and achieves the motion planning and end finger trajectory control of dexterous hand. In a simulated environment, the aforementioned method has successfully executed interactive tasks, including ball throwing and playing rock-paper-scissors. It achieved a maximum normalized reward of 0.83 and an 84% success rate. These results are noteworthy in terms of both control accuracy and response speed. This study offers novel insights into the effective resolution of the intricate challenges associated with interactions involving multi-fingered dexterous hands and human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
知性的紫寒完成签到,获得积分10
2秒前
大树下的小鸟完成签到,获得积分10
2秒前
pilgrim完成签到,获得积分20
6秒前
玉玊完成签到,获得积分10
6秒前
三岁完成签到,获得积分20
6秒前
张丹兰完成签到,获得积分10
6秒前
一个火蓉果啊完成签到,获得积分10
6秒前
6秒前
nah完成签到 ,获得积分10
6秒前
zjzxs完成签到,获得积分10
9秒前
ZHANG完成签到,获得积分10
10秒前
zwh完成签到,获得积分10
12秒前
豆腐干地方完成签到,获得积分10
13秒前
剑来不来完成签到,获得积分10
21秒前
过时的砖头完成签到 ,获得积分10
29秒前
华圆圆完成签到,获得积分10
9分钟前
savannah完成签到,获得积分10
9分钟前
无限的平露完成签到,获得积分10
9分钟前
小蜜蜂完成签到 ,获得积分20
9分钟前
蚂蚱别跳完成签到,获得积分10
9分钟前
joe完成签到 ,获得积分10
10分钟前
求助完成签到,获得积分10
10分钟前
小番茄完成签到 ,获得积分10
10分钟前
devin578632完成签到,获得积分10
10分钟前
fancy完成签到,获得积分10
10分钟前
kiki完成签到 ,获得积分10
10分钟前
张亚娟完成签到,获得积分10
10分钟前
Eazin完成签到,获得积分10
10分钟前
rrrrrrry完成签到,获得积分10
10分钟前
大鱼大鱼完成签到,获得积分10
10分钟前
10分钟前
10分钟前
10分钟前
10分钟前
daguan完成签到,获得积分10
10分钟前
糖果完成签到,获得积分10
10分钟前
10分钟前
神外第一刀完成签到 ,获得积分10
10分钟前
胖肉肉完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465594
求助须知:如何正确求助?哪些是违规求助? 4569952
关于积分的说明 14321427
捐赠科研通 4496343
什么是DOI,文献DOI怎么找? 2463253
邀请新用户注册赠送积分活动 1452202
关于科研通互助平台的介绍 1427422