已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep reinforcement learning approach

强化学习 计算机科学 钢筋 人工智能 人机交互 心理学 社会心理学
作者
Baojiang Li,Shengjie Qiu,Jibo Bai,Bin Wang,Zhekai Zhang,Liang Li,Haiyan Wang,Xichao Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111847-111847 被引量:6
标识
DOI:10.1016/j.knosys.2024.111847
摘要

When a multi-fingered dexterous hand interacts with the external environment, it encounters various challenges, including the utilization of complex control techniques and the intricate coordination of finger motion sequences. Previous studies have primarily concentrated on investigating the interaction between multi-fingered dexterous hands and external objects, usually using model-based control or model-free reinforcement learning techniques. However, during practical implementation, various constraining factors are encountered, such as intricate modeling and limited interaction capabilities. In practical scenarios, the utilization of multi-fingered dexterous hands is imperative for the swift and efficient execution of a wide range of interactive tasks, including but not limited to throwing a ball and playing rock-paper-scissors. These tasks require skilled manual dexterity to demonstrate both precise control and quick responsiveness. To tackle this issue, we propose a hierarchical control approach for multi-fingered dexterous hands with interactive functionalities, utilizing model-free deep reinforcement learning. The complex interaction task is decomposed into simple sub-tasks using hierarchical strategy and action primitive decomposition, which effectively reduces the complexity of the action space, and achieves the motion planning and end finger trajectory control of dexterous hand. In a simulated environment, the aforementioned method has successfully executed interactive tasks, including ball throwing and playing rock-paper-scissors. It achieved a maximum normalized reward of 0.83 and an 84% success rate. These results are noteworthy in terms of both control accuracy and response speed. This study offers novel insights into the effective resolution of the intricate challenges associated with interactions involving multi-fingered dexterous hands and human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助里苏特采纳,获得10
1秒前
HZH发布了新的文献求助10
2秒前
呱呱完成签到,获得积分10
3秒前
BH6小行星完成签到,获得积分10
3秒前
含糊的雨寒完成签到 ,获得积分10
8秒前
852应助wwwww采纳,获得10
8秒前
8秒前
Lucas应助舒适的秋尽采纳,获得10
9秒前
10秒前
BH6小行星发布了新的文献求助10
10秒前
皮皮虾发布了新的文献求助10
10秒前
CFJ完成签到,获得积分10
13秒前
尔白完成签到 ,获得积分10
13秒前
已有琦琦勿扰完成签到 ,获得积分10
14秒前
nn发布了新的文献求助10
14秒前
lotus发布了新的文献求助10
15秒前
沉静的万天完成签到 ,获得积分10
15秒前
16秒前
CC发布了新的文献求助10
17秒前
17秒前
18秒前
SciGPT应助jjdeng采纳,获得10
20秒前
科研通AI6.1应助孙靖博采纳,获得10
20秒前
领导范儿应助孙靖博采纳,获得10
20秒前
小鸡毛发布了新的文献求助10
24秒前
小二郎应助lx840518采纳,获得10
26秒前
26秒前
29秒前
Ava应助小琴爱学习采纳,获得10
30秒前
32秒前
阳光的青荷完成签到,获得积分10
33秒前
xinlou完成签到,获得积分10
33秒前
33秒前
djxdjt发布了新的文献求助10
34秒前
April发布了新的文献求助10
35秒前
呆呆兽发布了新的文献求助10
35秒前
36秒前
36秒前
科研通AI6.1应助麻酱采纳,获得10
36秒前
豆花完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958