Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep reinforcement learning approach

强化学习 计算机科学 钢筋 人工智能 人机交互 心理学 社会心理学
作者
Baojiang Li,Shengjie Qiu,Jibo Bai,Bin Wang,Zhekai Zhang,Liang Li,Haiyan Wang,Xichao Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:295: 111847-111847 被引量:6
标识
DOI:10.1016/j.knosys.2024.111847
摘要

When a multi-fingered dexterous hand interacts with the external environment, it encounters various challenges, including the utilization of complex control techniques and the intricate coordination of finger motion sequences. Previous studies have primarily concentrated on investigating the interaction between multi-fingered dexterous hands and external objects, usually using model-based control or model-free reinforcement learning techniques. However, during practical implementation, various constraining factors are encountered, such as intricate modeling and limited interaction capabilities. In practical scenarios, the utilization of multi-fingered dexterous hands is imperative for the swift and efficient execution of a wide range of interactive tasks, including but not limited to throwing a ball and playing rock-paper-scissors. These tasks require skilled manual dexterity to demonstrate both precise control and quick responsiveness. To tackle this issue, we propose a hierarchical control approach for multi-fingered dexterous hands with interactive functionalities, utilizing model-free deep reinforcement learning. The complex interaction task is decomposed into simple sub-tasks using hierarchical strategy and action primitive decomposition, which effectively reduces the complexity of the action space, and achieves the motion planning and end finger trajectory control of dexterous hand. In a simulated environment, the aforementioned method has successfully executed interactive tasks, including ball throwing and playing rock-paper-scissors. It achieved a maximum normalized reward of 0.83 and an 84% success rate. These results are noteworthy in terms of both control accuracy and response speed. This study offers novel insights into the effective resolution of the intricate challenges associated with interactions involving multi-fingered dexterous hands and human-computer interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huayi发布了新的文献求助10
1秒前
1秒前
林见清完成签到,获得积分10
1秒前
1秒前
隐形曼青应助liia采纳,获得10
1秒前
英姑应助薛博文采纳,获得10
1秒前
BowieHuang应助清脆哈密瓜采纳,获得10
1秒前
2秒前
WzH发布了新的文献求助10
3秒前
3秒前
3秒前
富贵儿发布了新的文献求助10
4秒前
66发布了新的文献求助10
4秒前
4秒前
优雅沛文发布了新的文献求助10
5秒前
烟花应助zhao采纳,获得10
5秒前
5秒前
顺利毕业发布了新的文献求助80
5秒前
科研通AI6应助ning采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
YH完成签到,获得积分10
7秒前
7秒前
周文鑫发布了新的文献求助10
8秒前
8秒前
宋宋发布了新的文献求助10
8秒前
重要的炳完成签到 ,获得积分10
8秒前
超体完成签到 ,获得积分10
8秒前
8秒前
顺心冬卉发布了新的文献求助10
9秒前
汉堡包应助zehua309采纳,获得10
9秒前
9秒前
9秒前
9秒前
充电宝应助知秋采纳,获得10
9秒前
科研通AI6应助天空之城采纳,获得10
9秒前
天天发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616