A lung disease diagnosis algorithm based on 2D spectral features of ultrasound RF signals

超声波 医学 模态(人机交互) 算法 标准差 接收机工作特性 放射科 医学诊断 信号(编程语言) 计算机科学 人工智能 统计 数学 内科学 程序设计语言
作者
Qi Zhang,Renjie Song,Jing Hang,Siqi Wei,Yifei Zhu,Guofeng Zhang,Bo Ding,Xinhua Ye,Xiasheng Guo,Dong Zhang,Pingping Wu,Han Lin,Juan Tu
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:140: 107315-107315
标识
DOI:10.1016/j.ultras.2024.107315
摘要

Lung diseases are commonly diagnosed based on clinical pathological indications criteria and radiological imaging tools (e.g., X-rays and CT). During a pandemic like COVID-19, the use of ultrasound imaging devices has broadened for emergency examinations by taking their unique advantages such as portability, real-time detection, easy operation and no radiation. This provides a rapid, safe, and cost-effective imaging modality for screening lung diseases. However, the current pulmonary ultrasound diagnosis mainly relies on the subjective assessments of sonographers, which has high requirements for the operator's professional ability and clinical experience. In this study, we proposed an objective and quantifiable algorithm for the diagnosis of lung diseases that utilizes two-dimensional (2D) spectral features of ultrasound radiofrequency (RF) signals. The ultrasound data samples consisted of a set of RF signal frames, which were collected by professional sonographers. In each case, a region of interest of uniform size was delineated along the pleural line. The standard deviation curve of the 2D spatial spectrum was calculated and smoothed. A linear fit was applied to the high-frequency segment of the processed data curve, and the slope of the fitted line was defined as the frequency spectrum standard deviation slope (FSSDS). Based on the current data, the method exhibited a superior diagnostic sensitivity of 98% and an accuracy of 91% for the identification of lung diseases. The area under the curve obtained by the current method exceeded the results obtained that interpreted by professional sonographers, which indicated that the current method could provide strong support for the clinical ultrasound diagnosis of lung diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
李爱国应助嗯哼采纳,获得10
13秒前
yumb发布了新的文献求助10
15秒前
zhang完成签到 ,获得积分10
18秒前
Cheney完成签到 ,获得积分10
19秒前
22秒前
洁净的向南完成签到 ,获得积分10
22秒前
FashionBoy应助yumb采纳,获得10
25秒前
嗯哼发布了新的文献求助10
26秒前
爱学习的瑞瑞子完成签到 ,获得积分10
29秒前
30秒前
爱撒娇的孤丹完成签到 ,获得积分10
39秒前
乐乐应助just123采纳,获得10
41秒前
qaplay完成签到 ,获得积分0
42秒前
mike2012完成签到 ,获得积分10
45秒前
yumb完成签到,获得积分20
51秒前
hhh2018687完成签到,获得积分10
55秒前
岂有此李完成签到,获得积分10
56秒前
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
NN应助科研通管家采纳,获得10
1分钟前
ossantu发布了新的文献求助10
1分钟前
1分钟前
老木虫发布了新的文献求助10
1分钟前
benyu完成签到,获得积分10
1分钟前
1分钟前
颜陌完成签到,获得积分10
1分钟前
1分钟前
清颜完成签到 ,获得积分10
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
廖天佑完成签到,获得积分10
1分钟前
panpanliumin完成签到,获得积分0
1分钟前
烟花应助沉积岩采纳,获得10
1分钟前
cdercder完成签到,获得积分0
1分钟前
mawenting完成签到 ,获得积分10
1分钟前
cgliuhx完成签到,获得积分10
1分钟前
加贝完成签到 ,获得积分10
1分钟前
1分钟前
sandyleung完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758260
求助须知:如何正确求助?哪些是违规求助? 3301123
关于积分的说明 10116523
捐赠科研通 3015582
什么是DOI,文献DOI怎么找? 1656219
邀请新用户注册赠送积分活动 790250
科研通“疑难数据库(出版商)”最低求助积分说明 753766