Road Network Traffic Flow Prediction Method Based on Graph Attention Networks

计算机科学 流量(计算机网络) 图形 数据挖掘 计算机网络 理论计算机科学
作者
Junqiang Wang,Shuqiang Yang,Ya Gao,Jun Wang,Osama Alfarraj
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (15)
标识
DOI:10.1142/s0218126624502736
摘要

With the acceleration of urbanization and the continuous growth of transportation demand, the traffic management of smart city road networks has become increasingly complex and critical. Traffic flow prediction, as an important component of smart transportation systems, is of great significance for optimizing traffic planning and improving traffic efficiency. The study collected and preprocessed traffic data in the smart city road network, including multi-dimensional information such as traffic flow, road conditions, and meteorological data. Then, based on the idea of graph neural networks, we constructed the topological structure of the urban road network and abstracted elements such as roads and intersections into nodes, using edges to represent their connection relationships, thus forming a graph dataset. Next, we introduced an attention mechanism to extract more representative node features through the weighted aggregation of node features, thereby achieving effective modeling of urban road network traffic flow. During the model training phase, we used real traffic datasets for experimental verification and integrated various information such as time, space, and road features into the model. The experimental results show that compared to traditional methods, this research prediction method has achieved better performance in traffic flow prediction tasks, with higher prediction accuracy and robustness. It has stronger applicability and effectiveness in different traffic scenarios. By integrating multi-dimensional information and introducing attention mechanisms, this method has significant advantages in improving the accuracy and robustness of traffic flow prediction, and has important practical significance and application prospects for the construction of smart transportation systems and the development of smart cities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安静的瑾瑜完成签到 ,获得积分10
1秒前
MOMO完成签到 ,获得积分10
1秒前
1秒前
2秒前
Kris发布了新的文献求助10
5秒前
fountainli发布了新的文献求助50
6秒前
疯少发布了新的文献求助10
7秒前
8秒前
CY完成签到,获得积分10
8秒前
深情安青应助2024论文计划采纳,获得30
9秒前
SciGPT应助迅速灵竹采纳,获得10
9秒前
10秒前
小扬仔21发布了新的文献求助10
11秒前
科研通AI2S应助吴雨木目采纳,获得10
11秒前
YHQ完成签到,获得积分10
12秒前
年年年年发布了新的文献求助10
13秒前
14秒前
Zeeshan关注了科研通微信公众号
14秒前
abrakadabra完成签到,获得积分10
15秒前
Lucas应助Nevaeh采纳,获得10
17秒前
17秒前
Jau完成签到,获得积分0
17秒前
班里发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
宋泽艺完成签到 ,获得积分10
19秒前
21秒前
小二郎应助阳阳采纳,获得10
22秒前
科研通AI2S应助迪迦采纳,获得10
22秒前
LXB发布了新的文献求助10
23秒前
忱麓裔发布了新的文献求助10
23秒前
迅速灵竹发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
兔子云完成签到 ,获得积分10
27秒前
28秒前
良辰应助科研1采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999