Road Network Traffic Flow Prediction Method Based on Graph Attention Networks

计算机科学 流量(计算机网络) 图形 数据挖掘 计算机网络 理论计算机科学
作者
Junqiang Wang,Shuqiang Yang,Ya Gao,Jun Wang,Osama Alfarraj
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (15)
标识
DOI:10.1142/s0218126624502736
摘要

With the acceleration of urbanization and the continuous growth of transportation demand, the traffic management of smart city road networks has become increasingly complex and critical. Traffic flow prediction, as an important component of smart transportation systems, is of great significance for optimizing traffic planning and improving traffic efficiency. The study collected and preprocessed traffic data in the smart city road network, including multi-dimensional information such as traffic flow, road conditions, and meteorological data. Then, based on the idea of graph neural networks, we constructed the topological structure of the urban road network and abstracted elements such as roads and intersections into nodes, using edges to represent their connection relationships, thus forming a graph dataset. Next, we introduced an attention mechanism to extract more representative node features through the weighted aggregation of node features, thereby achieving effective modeling of urban road network traffic flow. During the model training phase, we used real traffic datasets for experimental verification and integrated various information such as time, space, and road features into the model. The experimental results show that compared to traditional methods, this research prediction method has achieved better performance in traffic flow prediction tasks, with higher prediction accuracy and robustness. It has stronger applicability and effectiveness in different traffic scenarios. By integrating multi-dimensional information and introducing attention mechanisms, this method has significant advantages in improving the accuracy and robustness of traffic flow prediction, and has important practical significance and application prospects for the construction of smart transportation systems and the development of smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祝愿完成签到,获得积分10
1秒前
2秒前
2秒前
单忘幽完成签到,获得积分10
3秒前
哎咦随风起完成签到,获得积分10
3秒前
4秒前
顾矜应助wa采纳,获得10
4秒前
一一发布了新的文献求助10
4秒前
一沙发布了新的文献求助10
5秒前
科研通AI5应助TEMPO采纳,获得10
5秒前
斯文静竹完成签到,获得积分10
6秒前
Aquilus发布了新的文献求助10
6秒前
1z2x3s发布了新的文献求助10
7秒前
英姑应助滚滚采纳,获得10
7秒前
酷波er应助无辜乘云采纳,获得10
8秒前
hanzhipad应助phenix_y采纳,获得10
9秒前
皮蛋robin汤完成签到 ,获得积分10
11秒前
金美发布了新的文献求助10
12秒前
12秒前
12秒前
小高加油发布了新的文献求助10
12秒前
13秒前
一事无成的研一完成签到,获得积分20
13秒前
13秒前
14秒前
16秒前
Sean完成签到,获得积分10
16秒前
wa发布了新的文献求助10
17秒前
ZLWF发布了新的文献求助10
18秒前
小叶子发布了新的文献求助10
18秒前
科研小白发布了新的文献求助10
20秒前
20秒前
潜行者完成签到 ,获得积分10
21秒前
高挑的初蝶完成签到,获得积分10
21秒前
yagami发布了新的文献求助10
22秒前
23秒前
杨文慧发布了新的文献求助10
23秒前
阿钰完成签到,获得积分10
24秒前
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059