医学
接收机工作特性
队列
营养不良
结直肠癌
减肥
危险系数
医学诊断
机器学习
癌症
人工智能
儿科
内科学
置信区间
计算机科学
病理
肥胖
作者
Tiantian Wu,Hongxia Xu,Wei Li,Fuxiang Zhou,Zengqing Guo,Kunhua Wang,Min Weng,Chunling Zhou,Ming Liu,Yuan Lin,Suyi Li,Ying He,Qinghua Yao,Hanping Shi,Chunhua Song
标识
DOI:10.1016/j.clnu.2024.04.001
摘要
The key step of the Global Leadership Initiative on Malnutrition (GLIM) is nutritional risk screening, while the most appropriate screening tool for colorectal cancer (CRC) patients is yet unknown. The GLIM diagnosis relies on weight loss information, and bias or even failure to recall patients' historical weight can cause misestimates of malnutrition. We aimed to compare the suitability of several screening tools in GLIM diagnosis, and establish machine learning (ML) models to predict malnutrition in CRC patients without weight loss information.
科研通智能强力驱动
Strongly Powered by AbleSci AI