XLMR4MD: New Vietnamese dataset and framework for detecting the consistency of description and permission in Android applications using large language models

许可 计算机科学 越南语 一致性(知识库) Android(操作系统) Android应用程序 数据挖掘 人工智能 操作系统 语言学 哲学 政治学 法学
作者
Qui Ngoc Nguyen,Nguyen Tan Cam,Kiet Van Nguyen
出处
期刊:Computers & Security [Elsevier]
卷期号:140: 103814-103814
标识
DOI:10.1016/j.cose.2024.103814
摘要

Google Play and other application marketplaces have various Android applications and metadata. Among these, description information and privacy policy help explain the application's functionality. They also describe the permission of the application, especially those related to sensitive information. Detecting the inconsistency between the description of the application and privacy information and the permission extracted in the application's source code helps users decide whether to install and use the application. In this research, we propose a new method based on a pre-trained language model to detect inconsistencies between the permission extracted from the description application and privacy policy and the permission extracted from the application's source code (file APK). Related works focus on models of large-scale datasets, especially for resource-rich languages such as English. However, a language with low resources, like Vietnamese, needs more datasets for the task. To solve this problem, we propose the ViDPApp dataset (Description and Privacy Policy of Applications on Vietnamese domains), a high-quality dataset that humans manually annotate with 12,000+ sentences with an inter-annotator agreement (IAA) of over 85%. In addition, we proposed XLMR4MD, a new framework using large language models, outperforming powerful machine models (LSTM, Bi-GRU-LSTM-CNN, WikiBERT, DistilBERT, mBERT, and PhoBERT) and achieving the best with 84.04% F1 score in detecting inconsistencies between Android application permission and description. This framework can be fine-tuned for 100 languages, which benefits low-resource languages like Vietnamese. The dataset is available for research purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自然伊发布了新的文献求助10
2秒前
YCH完成签到,获得积分10
2秒前
LNN发布了新的文献求助10
2秒前
3秒前
3秒前
存在发布了新的文献求助10
4秒前
小二郎应助瞬间de回眸采纳,获得10
4秒前
5秒前
5秒前
duan发布了新的文献求助10
5秒前
6秒前
醉生梦死完成签到 ,获得积分10
6秒前
7秒前
快乐一江发布了新的文献求助10
8秒前
Joshua完成签到,获得积分10
8秒前
小呵点完成签到 ,获得积分10
8秒前
耶椰耶完成签到 ,获得积分10
10秒前
随风完成签到,获得积分10
10秒前
成森完成签到,获得积分10
10秒前
科研通AI2S应助自然伊采纳,获得10
11秒前
善学以致用应助黛寒采纳,获得10
12秒前
kevinjiang完成签到,获得积分0
14秒前
丘比特应助Chen采纳,获得10
15秒前
16秒前
斯文冷亦完成签到 ,获得积分10
17秒前
慕青应助阿柴_Htao采纳,获得10
17秒前
zzz完成签到 ,获得积分10
19秒前
59发布了新的文献求助10
19秒前
shengChen完成签到,获得积分20
19秒前
20秒前
sissi应助郝薇薇薇薇儿采纳,获得10
20秒前
小马甲应助陈隆采纳,获得10
22秒前
23秒前
yaoyao发布了新的文献求助10
24秒前
guo完成签到,获得积分10
25秒前
无花果应助小米儿丫丫采纳,获得10
25秒前
爱撒娇的鱼应助于广喜采纳,获得10
26秒前
shengChen发布了新的文献求助10
26秒前
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265