XLMR4MD: New Vietnamese dataset and framework for detecting the consistency of description and permission in Android applications using large language models

许可 计算机科学 越南语 一致性(知识库) Android(操作系统) Android应用程序 数据挖掘 人工智能 操作系统 语言学 哲学 政治学 法学
作者
Qui Ngoc Nguyen,Nguyen Tan Cam,Kiet Van Nguyen
出处
期刊:Computers & Security [Elsevier BV]
卷期号:140: 103814-103814
标识
DOI:10.1016/j.cose.2024.103814
摘要

Google Play and other application marketplaces have various Android applications and metadata. Among these, description information and privacy policy help explain the application's functionality. They also describe the permission of the application, especially those related to sensitive information. Detecting the inconsistency between the description of the application and privacy information and the permission extracted in the application's source code helps users decide whether to install and use the application. In this research, we propose a new method based on a pre-trained language model to detect inconsistencies between the permission extracted from the description application and privacy policy and the permission extracted from the application's source code (file APK). Related works focus on models of large-scale datasets, especially for resource-rich languages such as English. However, a language with low resources, like Vietnamese, needs more datasets for the task. To solve this problem, we propose the ViDPApp dataset (Description and Privacy Policy of Applications on Vietnamese domains), a high-quality dataset that humans manually annotate with 12,000+ sentences with an inter-annotator agreement (IAA) of over 85%. In addition, we proposed XLMR4MD, a new framework using large language models, outperforming powerful machine models (LSTM, Bi-GRU-LSTM-CNN, WikiBERT, DistilBERT, mBERT, and PhoBERT) and achieving the best with 84.04% F1 score in detecting inconsistencies between Android application permission and description. This framework can be fine-tuned for 100 languages, which benefits low-resource languages like Vietnamese. The dataset is available for research purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kf033完成签到 ,获得积分10
刚刚
搞怪的易槐完成签到,获得积分10
1秒前
细腻的歌曲完成签到,获得积分10
1秒前
大个应助小可爱采纳,获得10
1秒前
灰大壮壮完成签到,获得积分20
2秒前
8秒前
8秒前
李健应助888采纳,获得10
9秒前
糊涂的不尤完成签到 ,获得积分10
11秒前
vikoer完成签到,获得积分10
14秒前
14秒前
15秒前
小蘑菇应助霸气小懒猪采纳,获得10
15秒前
Tender完成签到,获得积分10
16秒前
开心市民小刘完成签到,获得积分10
16秒前
嘻嘻汐泽完成签到,获得积分10
17秒前
777完成签到 ,获得积分10
17秒前
灰大壮壮发布了新的文献求助10
18秒前
小可爱发布了新的文献求助10
20秒前
研友_VZG7GZ应助TT2022采纳,获得30
24秒前
25秒前
白日幻想家完成签到 ,获得积分10
25秒前
25秒前
不期发布了新的文献求助10
27秒前
29秒前
开朗的尔风完成签到,获得积分20
29秒前
华仔应助zhangzhi采纳,获得10
30秒前
31秒前
正直的夏真完成签到,获得积分10
32秒前
陈旧完成签到,获得积分10
32秒前
lxg完成签到,获得积分10
33秒前
33秒前
34秒前
整齐乐驹完成签到,获得积分10
36秒前
冷傲魔镜发布了新的文献求助10
36秒前
YY发布了新的文献求助30
40秒前
meng发布了新的文献求助10
40秒前
大力的行云完成签到,获得积分10
42秒前
42秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724