Efficient breast cancer diagnosis using multi‐level progressive feature aggregation based deep transfer learning system

计算机科学 特征(语言学) 学习迁移 乳腺癌 人工智能 癌症 医学 内科学 哲学 语言学
作者
Vivek Patel,Vijayshri Chaurasia
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (3)
标识
DOI:10.1002/ima.23050
摘要

Abstract Breast cancer is a worldwide fatal disease that exists mostly among women. The deep learning technique has proven its effectiveness, but the performance of the existing deep learning systems is quite compromising. In this work, a deep transfer learning system is suggested for efficient breast cancer classification from histopathology images. This system is based on a novel multi‐level progressive feature aggregation (MPFA) and a spatial domain learning approach. The combination of a pretrained Resnet101 backbone network with MPFA is implemented to extract more significant features. In addition, a mixed‐dilated spatial domain learning network (MSLN) is further incorporated to enhance the receptive field and increase discrimination between features. The proposed method achieved superior performance as compared to the existing state‐of‐the‐art methods, offering 99.24% accuracy, a 98.79% F‐1 score, 98.59% precision, and 98.99% recall values over BreaKHis dataset. An ablation study is carried out over the ICIAR2018 dataset to verify the generalizability and effectiveness of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
欧阳世宏完成签到,获得积分10
1秒前
虚幻羊青发布了新的文献求助30
1秒前
文静完成签到,获得积分10
1秒前
2秒前
Shxu完成签到,获得积分10
2秒前
wj完成签到,获得积分10
2秒前
云岫完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
5秒前
WYQ完成签到,获得积分10
5秒前
li发布了新的文献求助10
6秒前
6秒前
hhh发布了新的文献求助10
7秒前
ang完成签到,获得积分10
8秒前
YY完成签到,获得积分10
9秒前
hannah发布了新的文献求助10
9秒前
wonderingria发布了新的文献求助10
9秒前
搜集达人应助俊逸的咖啡采纳,获得10
9秒前
哈哈爷发布了新的文献求助30
10秒前
留白完成签到,获得积分10
11秒前
saluo发布了新的文献求助10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
光影相生应助科研通管家采纳,获得10
11秒前
Maps发布了新的文献求助10
11秒前
英俊的铭应助科研通管家采纳,获得30
11秒前
Akim应助科研通管家采纳,获得10
12秒前
wang应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
云飞扬应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271