Decoding the influence of servitization on green transformation in manufacturing firms: The moderating effect of artificial intelligence

转化(遗传学) 实证研究 产业组织 业务 计算机科学 数学 化学 统计 生物化学 基因
作者
Yanwu Song,Niu Niu,Xinyi Song,Bin Zhang
出处
期刊:Energy Economics [Elsevier BV]
卷期号:139: 107875-107875 被引量:3
标识
DOI:10.1016/j.eneco.2024.107875
摘要

This research addresses three crucial dimensions in operations management: the servitization of manufacturing, the utilization of artificial intelligence (AI) platforms, and green transformation. Employing the by-production method, we construct a metric for green transformation applicable to listed firms. Our comprehensive analytical framework integrates the resource-based view and information asymmetry theories, enabling systematic investigation into the influence of manufacturing servitization on firms' green transformation. In addition, we examine the moderating effect of AI platforms on the execution of servitization strategies. The empirical foundation of our study is an annually updated dataset of 554 manufacturing firms listed on China's A-share market. Our findings reveal a strong positive correlation between the deployment of servitization strategies and the green transformation of firms. This association withstands multiple robustness tests, including core variable substitution, outlier removal, and adjustments in clustering standard errors. Our research uncovers notable nuances. The effect of servitization on green total factor productivity is more visible for eastern and central China firms. Also, state-owned enterprises demonstrate a more conspicuous influence from servitization strategies. However, we observe a slight diminishing of this effect in firms audited by the Big Four. An essential contribution of our study is the illumination of the role AI platforms play in enhancing the efficacy of servitization. These AI platforms facilitate the creation of tailored solutions that curtail resource wastage, thus amplifying the positive effect of servitization strategies on green transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助高高的无敌采纳,获得10
2秒前
CHR发布了新的文献求助10
2秒前
科研通AI2S应助李恒宇采纳,获得10
3秒前
绝尘发布了新的文献求助20
3秒前
在水一方应助漂亮的曼文采纳,获得10
3秒前
安详的夏山完成签到,获得积分20
4秒前
残血书生完成签到 ,获得积分10
4秒前
ff完成签到 ,获得积分10
5秒前
5秒前
阿a发布了新的文献求助10
5秒前
6秒前
共享精神应助可研小冲采纳,获得10
7秒前
AlinaLee应助jason采纳,获得10
7秒前
8秒前
8秒前
不安的墨镜完成签到,获得积分10
9秒前
xd完成签到,获得积分10
9秒前
9秒前
Bmo完成签到,获得积分10
9秒前
10秒前
wuduyouou发布了新的文献求助10
10秒前
星辰大海应助wtt0109采纳,获得10
10秒前
shelly发布了新的文献求助30
11秒前
斯文败类应助绝尘采纳,获得10
11秒前
充电宝应助荷叶塘塘主采纳,获得10
11秒前
可难关注了科研通微信公众号
12秒前
Bmo发布了新的文献求助10
12秒前
12秒前
13秒前
港岛妹妹发布了新的文献求助10
13秒前
阿a完成签到,获得积分10
14秒前
纯真的小婷完成签到 ,获得积分10
14秒前
hqq发布了新的文献求助10
15秒前
15秒前
16秒前
聪明眼睛完成签到,获得积分10
16秒前
32407152发布了新的文献求助10
17秒前
17秒前
单元完成签到,获得积分10
18秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3704381
求助须知:如何正确求助?哪些是违规求助? 3253927
关于积分的说明 9886503
捐赠科研通 2965712
什么是DOI,文献DOI怎么找? 1626530
邀请新用户注册赠送积分活动 770853
科研通“疑难数据库(出版商)”最低求助积分说明 743062