A review of privacy-preserving research on federated graph neural networks

计算机科学 推论 图形 人工神经网络 信息隐私 加密 机器学习 计算机安全 人工智能 理论计算机科学
作者
Lina Ge,YanKun Li,Haiao Li,Lei Tian,Zhe Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:600: 128166-128166
标识
DOI:10.1016/j.neucom.2024.128166
摘要

Graph neural networks are widely employed in diverse domains; however, they confront the peril of privacy infringement. To address this concern, federated learning emerges as a privacy-preserving approach that avoids sharing data for model training, effectively resolving the issue of privacy leakage in graph neural networks. The rapid advancement of federated neural networks has spurred the demand for more potent tools to enhance model performance owing to the concealed correlation information amongst federated learning participants. However, the structural attributes of federated graph neural networks render them vulnerable to inference attacks, reconstruction attacks, inversion attacks, and the like, potentially endangering privacy. This study delves into the intricacies of privacy-preserving within federated graph neural networks. Firstly, it introduces the architecture and variants of federated graph neural networks, analyzes the privacy risks encountered by these networks from four perspectives, and elucidates three primary attack methods. In accordance with the privacy-preserving mechanism of federated graph neural networks, it summarizes the privacy-preserving techniques and synthesizes the existing strategies from four perspectives: encryption methods, perturbation methods, anonymization, and hybrid methods. Furthermore, it summarily presents the prevailing framework for preserving privacy in neural networks. Ultimately, this paper examines the challenges and outlines future research directions pertaining to federated graph neural network technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doctor_Mill完成签到,获得积分10
1秒前
GZPFJMU发布了新的文献求助10
1秒前
leyi发布了新的文献求助10
1秒前
研友_8R5X3Z发布了新的文献求助10
2秒前
3秒前
超级的身影完成签到,获得积分10
3秒前
4秒前
zhangjiabin发布了新的文献求助10
4秒前
5秒前
俭朴依白完成签到,获得积分10
5秒前
6秒前
6秒前
玛斯特尔发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
傅傅发布了新的文献求助10
10秒前
11秒前
啦熊发布了新的文献求助10
12秒前
来一桶微笑完成签到,获得积分10
13秒前
yyyyy发布了新的文献求助10
14秒前
美好二娘完成签到 ,获得积分10
15秒前
上官若男应助研友_8R5X3Z采纳,获得10
16秒前
今后应助袁小豪采纳,获得10
16秒前
一个达不刘完成签到,获得积分10
16秒前
fool发布了新的文献求助10
17秒前
17秒前
ryan发布了新的文献求助20
17秒前
zhj发布了新的文献求助30
18秒前
18秒前
zhj完成签到,获得积分10
21秒前
你香发布了新的文献求助10
22秒前
桑吉卓玛发布了新的文献求助10
23秒前
cydanyanpi完成签到,获得积分10
24秒前
24秒前
游尘2001完成签到,获得积分10
24秒前
高兴的海白完成签到,获得积分10
25秒前
26秒前
杳鸢应助qaq采纳,获得10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222350
求助须知:如何正确求助?哪些是违规求助? 2870973
关于积分的说明 8173471
捐赠科研通 2538005
什么是DOI,文献DOI怎么找? 1370116
科研通“疑难数据库(出版商)”最低求助积分说明 645702
邀请新用户注册赠送积分活动 619507