材料科学
电导率
兴奋剂
电介质
电阻率和电导率
凝聚态物理
光电子学
物理化学
电气工程
化学
物理
工程类
作者
H.A.M. Ali,E.F.M. El-Zaidia,A.A.A. Darwish,A. S. Farid
标识
DOI:10.1088/1402-4896/ad5ec8
摘要
Abstract Erythrosin B (EB) doped in PVA film was processed utilizing the casting procedure, and the structure was investigated via the Fourier Transformation infrared technique (FTIR). FTIR analysis presented a strong formation of intermolecular hydrogen bonds among PVA and EB hydroxyl groups (OH). Characteristic temperature and frequency variation of dielectric behavior and AC electrical conductivity for films of PVA doped with Erythrosin B were analyzed at (293-383 K) temperature and (102-106 Hz) frequency. The AC conductivity dependency indicates that the predominant conduction mechanism in PVA doped with Erythrosin B films follows the correlated barrier hopping (CBH) model. The charge carriers' hopping involving localized states causes a relaxation process. Estimates were made for the AC conductivity activation energy and the conductivity relaxation energy. Frequency and temperature affect the dielectric constant (e/) and the dielectric loss (e//). The complex impedance spectrum (Z/ vs. Z//) showed single semicircular arcs with a decreased radius with increasing temperature. The relaxation peaks in the electric modulus representation are clearly defined, and the relaxation period has been calculated.
科研通智能强力驱动
Strongly Powered by AbleSci AI