Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour

抗压强度 聚合物 灰浆 生物量(生态学) 材料科学 环境科学 复合材料 地质学 海洋学
作者
P.J. Ardhira,Sanjay Kumar Shukla,Dhanya Sathyan
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:21: e03581-e03581
标识
DOI:10.1016/j.cscm.2024.e03581
摘要

The global warming dilemma raised an exigency toward sustainability in the construction industry and compelled scientists to hunt for alternative binders in construction materials. The, geopolymerization as a spectacular technology has arisen as a looming solution to this dilemma. This work assesses the features of geopolymer mortar developed with both industrial and agricultural wastes at ambient temperature curing. The geopolymer mix proportion was evolved in this study using main precursor material as fly ash, ground granulated blast furnace slag (GGBFS), sugarcane bagasse ash (SCBA) or rice husk ash (RHA). Workability and mechanical properties, including compressive strength, flexural strength, and split tensile strength of different mortar mixes with various percentages of RHA and SCBA for 365 days, were evaluated. Geopolymer mortar with 10 % SCBA and 5 % RHA achieved improvements of 25 % and 13.91 % in compressive strength, 10.6 % and 3.5 % in flexural strength, and 35 % and 16.8 % in split tensile strength, respectively. Good geopolymer gel formation is clearly evident from the SEM images of SCBA mortar. The main polymeric bonds Si–O–Al and Si-O-Si are also identified using FTIR. To assess the efficacious use of biomass ashes, resistance to chemical attack using H2SO4, HCl, Na2SiO3, and NaCl solutions for 365 days was studied. It was revealed that SCBA incorporated geopolymer mortar specimens achieved good resistance compared with RHA geopolymer mortar. The relation between the ambient temperature cured geopolymer specimen compressive strength at 28 days and 365 days chemical solution curried geopolymer specimen compressive strength find out using python and obtained R2 values more than 95 %. Also, this research proposed various machine learning techniques such as long short-term memory, support vector regression, random forest regression, XGBOOST, and AdaBOOST algorithms for the prediction of compressive strength of geopolymer using 724 mixture proportions with diverse curing temperatures and varying ages. The XGBOOST algorithm achieved the highest R² value of 0.92, demonstrating its effectiveness for the strength prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑米粥发布了新的文献求助10
1秒前
毛果芸香碱完成签到 ,获得积分10
1秒前
1秒前
1秒前
shi完成签到,获得积分10
2秒前
幸运鹅发布了新的文献求助10
2秒前
2秒前
Li发布了新的文献求助10
2秒前
无限飞烟完成签到,获得积分10
2秒前
简意发布了新的文献求助10
3秒前
4秒前
6秒前
深情安青应助Charlie采纳,获得10
6秒前
轩辕疾发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
zhu完成签到,获得积分20
10秒前
livra1058完成签到,获得积分10
10秒前
10秒前
10秒前
丫丫完成签到 ,获得积分10
11秒前
11秒前
嘚嘚完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
爱笑灵雁发布了新的文献求助10
13秒前
livra1058发布了新的文献求助10
14秒前
14秒前
杏子发布了新的文献求助10
14秒前
14秒前
研友_ndvmV8发布了新的文献求助10
14秒前
斯文败类应助含糊的寻雪采纳,获得10
15秒前
wwww发布了新的文献求助20
17秒前
CipherSage应助哈哈采纳,获得10
17秒前
馨妈完成签到 ,获得积分10
17秒前
Akim应助调皮的巧凡采纳,获得10
17秒前
大模型应助能干的初瑶采纳,获得30
19秒前
19秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687