Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour

抗压强度 聚合物 灰浆 生物量(生态学) 材料科学 环境科学 复合材料 地质学 海洋学
作者
P.J. Ardhira,Sanjay Kumar Shukla,Dhanya Sathyan
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:21: e03581-e03581
标识
DOI:10.1016/j.cscm.2024.e03581
摘要

The global warming dilemma raised an exigency toward sustainability in the construction industry and compelled scientists to hunt for alternative binders in construction materials. The, geopolymerization as a spectacular technology has arisen as a looming solution to this dilemma. This work assesses the features of geopolymer mortar developed with both industrial and agricultural wastes at ambient temperature curing. The geopolymer mix proportion was evolved in this study using main precursor material as fly ash, ground granulated blast furnace slag (GGBFS), sugarcane bagasse ash (SCBA) or rice husk ash (RHA). Workability and mechanical properties, including compressive strength, flexural strength, and split tensile strength of different mortar mixes with various percentages of RHA and SCBA for 365 days, were evaluated. Geopolymer mortar with 10 % SCBA and 5 % RHA achieved improvements of 25 % and 13.91 % in compressive strength, 10.6 % and 3.5 % in flexural strength, and 35 % and 16.8 % in split tensile strength, respectively. Good geopolymer gel formation is clearly evident from the SEM images of SCBA mortar. The main polymeric bonds Si–O–Al and Si-O-Si are also identified using FTIR. To assess the efficacious use of biomass ashes, resistance to chemical attack using H2SO4, HCl, Na2SiO3, and NaCl solutions for 365 days was studied. It was revealed that SCBA incorporated geopolymer mortar specimens achieved good resistance compared with RHA geopolymer mortar. The relation between the ambient temperature cured geopolymer specimen compressive strength at 28 days and 365 days chemical solution curried geopolymer specimen compressive strength find out using python and obtained R2 values more than 95 %. Also, this research proposed various machine learning techniques such as long short-term memory, support vector regression, random forest regression, XGBOOST, and AdaBOOST algorithms for the prediction of compressive strength of geopolymer using 724 mixture proportions with diverse curing temperatures and varying ages. The XGBOOST algorithm achieved the highest R² value of 0.92, demonstrating its effectiveness for the strength prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助Zack采纳,获得30
1秒前
2秒前
lbt完成签到 ,获得积分10
3秒前
Jau完成签到,获得积分0
3秒前
3秒前
3秒前
5秒前
糖七泡泡发布了新的文献求助10
6秒前
6秒前
顾语琴发布了新的文献求助10
7秒前
寒冰发布了新的文献求助10
9秒前
zy997987876发布了新的文献求助10
10秒前
平平平平发布了新的文献求助50
10秒前
情怀应助hy采纳,获得10
12秒前
13秒前
departure完成签到,获得积分10
14秒前
14秒前
NuLi完成签到 ,获得积分10
15秒前
ppat5012完成签到 ,获得积分10
16秒前
常路漫完成签到,获得积分10
17秒前
18秒前
yixia222发布了新的文献求助10
19秒前
19秒前
19秒前
嘎嘎嘎嘎发布了新的文献求助10
19秒前
Kinsuo发布了新的文献求助10
19秒前
20秒前
Mry完成签到,获得积分10
20秒前
常路漫发布了新的文献求助30
21秒前
香蕉觅云应助lins采纳,获得10
21秒前
KXX完成签到,获得积分10
21秒前
sharronjxx发布了新的文献求助200
23秒前
jack潘完成签到,获得积分10
23秒前
啊251发布了新的文献求助10
23秒前
23秒前
23秒前
干羞花完成签到,获得积分10
24秒前
Jiancui完成签到 ,获得积分10
24秒前
afrex发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151603
求助须知:如何正确求助?哪些是违规求助? 2803074
关于积分的说明 7851668
捐赠科研通 2460423
什么是DOI,文献DOI怎么找? 1309767
科研通“疑难数据库(出版商)”最低求助积分说明 629025
版权声明 601760