Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour

抗压强度 聚合物 灰浆 生物量(生态学) 材料科学 环境科学 复合材料 地质学 海洋学
作者
P.J. Ardhira,Sanjay Kumar Shukla,Dhanya Sathyan
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:21: e03581-e03581
标识
DOI:10.1016/j.cscm.2024.e03581
摘要

The global warming dilemma raised an exigency toward sustainability in the construction industry and compelled scientists to hunt for alternative binders in construction materials. The, geopolymerization as a spectacular technology has arisen as a looming solution to this dilemma. This work assesses the features of geopolymer mortar developed with both industrial and agricultural wastes at ambient temperature curing. The geopolymer mix proportion was evolved in this study using main precursor material as fly ash, ground granulated blast furnace slag (GGBFS), sugarcane bagasse ash (SCBA) or rice husk ash (RHA). Workability and mechanical properties, including compressive strength, flexural strength, and split tensile strength of different mortar mixes with various percentages of RHA and SCBA for 365 days, were evaluated. Geopolymer mortar with 10 % SCBA and 5 % RHA achieved improvements of 25 % and 13.91 % in compressive strength, 10.6 % and 3.5 % in flexural strength, and 35 % and 16.8 % in split tensile strength, respectively. Good geopolymer gel formation is clearly evident from the SEM images of SCBA mortar. The main polymeric bonds Si–O–Al and Si-O-Si are also identified using FTIR. To assess the efficacious use of biomass ashes, resistance to chemical attack using H2SO4, HCl, Na2SiO3, and NaCl solutions for 365 days was studied. It was revealed that SCBA incorporated geopolymer mortar specimens achieved good resistance compared with RHA geopolymer mortar. The relation between the ambient temperature cured geopolymer specimen compressive strength at 28 days and 365 days chemical solution curried geopolymer specimen compressive strength find out using python and obtained R2 values more than 95 %. Also, this research proposed various machine learning techniques such as long short-term memory, support vector regression, random forest regression, XGBOOST, and AdaBOOST algorithms for the prediction of compressive strength of geopolymer using 724 mixture proportions with diverse curing temperatures and varying ages. The XGBOOST algorithm achieved the highest R² value of 0.92, demonstrating its effectiveness for the strength prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
姜艺童发布了新的文献求助10
刚刚
烟花应助THINKG采纳,获得10
刚刚
小易发布了新的文献求助10
1秒前
mm发布了新的文献求助10
1秒前
李微发布了新的文献求助50
1秒前
景凤灵发布了新的文献求助10
1秒前
1秒前
wangxinyu发布了新的文献求助10
2秒前
小火完成签到,获得积分20
2秒前
大米粒发布了新的文献求助10
2秒前
3秒前
干净的秋柳完成签到,获得积分10
3秒前
CometShower完成签到,获得积分10
3秒前
红茶发布了新的文献求助10
4秒前
4秒前
搜集达人应助LiuYinglong采纳,获得10
6秒前
6秒前
知白发布了新的文献求助10
6秒前
6秒前
浮游应助眯眯眼的芷天采纳,获得10
7秒前
7秒前
Abc123完成签到,获得积分10
9秒前
一只呆呆发布了新的文献求助10
9秒前
景凤灵完成签到,获得积分10
9秒前
Owen应助爱你哦采纳,获得10
9秒前
蒺藜发布了新的文献求助30
10秒前
yizhi猫完成签到,获得积分10
11秒前
Hello应助流年采纳,获得10
11秒前
水草帽发布了新的文献求助10
12秒前
13秒前
小二郎应助大米粒采纳,获得10
13秒前
14秒前
完美世界应助独摇之采纳,获得10
14秒前
飘逸的天菱完成签到,获得积分10
14秒前
俭朴的迎夏完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
shirley完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4992878
求助须知:如何正确求助?哪些是违规求助? 4240810
关于积分的说明 13212439
捐赠科研通 4036159
什么是DOI,文献DOI怎么找? 2208306
邀请新用户注册赠送积分活动 1219242
关于科研通互助平台的介绍 1137557