Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour

抗压强度 聚合物 灰浆 生物量(生态学) 材料科学 环境科学 复合材料 地质学 海洋学
作者
P.J. Ardhira,Sanjay Kumar Shukla,Dhanya Sathyan
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:21: e03581-e03581
标识
DOI:10.1016/j.cscm.2024.e03581
摘要

The global warming dilemma raised an exigency toward sustainability in the construction industry and compelled scientists to hunt for alternative binders in construction materials. The, geopolymerization as a spectacular technology has arisen as a looming solution to this dilemma. This work assesses the features of geopolymer mortar developed with both industrial and agricultural wastes at ambient temperature curing. The geopolymer mix proportion was evolved in this study using main precursor material as fly ash, ground granulated blast furnace slag (GGBFS), sugarcane bagasse ash (SCBA) or rice husk ash (RHA). Workability and mechanical properties, including compressive strength, flexural strength, and split tensile strength of different mortar mixes with various percentages of RHA and SCBA for 365 days, were evaluated. Geopolymer mortar with 10 % SCBA and 5 % RHA achieved improvements of 25 % and 13.91 % in compressive strength, 10.6 % and 3.5 % in flexural strength, and 35 % and 16.8 % in split tensile strength, respectively. Good geopolymer gel formation is clearly evident from the SEM images of SCBA mortar. The main polymeric bonds Si–O–Al and Si-O-Si are also identified using FTIR. To assess the efficacious use of biomass ashes, resistance to chemical attack using H2SO4, HCl, Na2SiO3, and NaCl solutions for 365 days was studied. It was revealed that SCBA incorporated geopolymer mortar specimens achieved good resistance compared with RHA geopolymer mortar. The relation between the ambient temperature cured geopolymer specimen compressive strength at 28 days and 365 days chemical solution curried geopolymer specimen compressive strength find out using python and obtained R2 values more than 95 %. Also, this research proposed various machine learning techniques such as long short-term memory, support vector regression, random forest regression, XGBOOST, and AdaBOOST algorithms for the prediction of compressive strength of geopolymer using 724 mixture proportions with diverse curing temperatures and varying ages. The XGBOOST algorithm achieved the highest R² value of 0.92, demonstrating its effectiveness for the strength prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过冷风发布了新的文献求助10
刚刚
石栾发布了新的文献求助10
1秒前
1秒前
xiaoqin完成签到,获得积分10
1秒前
1秒前
春风十里完成签到,获得积分10
2秒前
2秒前
lulu发布了新的文献求助10
2秒前
sun发布了新的文献求助10
2秒前
赵鹏完成签到,获得积分10
2秒前
菠萝吹雪发布了新的文献求助10
2秒前
2秒前
SunnyYim发布了新的文献求助10
2秒前
田様应助maomao采纳,获得10
3秒前
20011013发布了新的文献求助10
3秒前
sugkook完成签到,获得积分20
3秒前
自然香岚发布了新的文献求助10
3秒前
JamesPei应助下雨天采纳,获得10
3秒前
小桑桑完成签到,获得积分10
4秒前
4秒前
苏卿发布了新的文献求助100
4秒前
jack完成签到,获得积分10
5秒前
5秒前
5秒前
鞘皮发布了新的文献求助20
5秒前
活泼红牛发布了新的文献求助10
5秒前
5秒前
汉堡包应助墨西哥猪肉卷采纳,获得10
5秒前
5秒前
6秒前
芙芙完成签到,获得积分10
7秒前
MarcoPolo发布了新的文献求助10
7秒前
wangR完成签到,获得积分10
8秒前
8秒前
8秒前
yyyy发布了新的文献求助10
8秒前
夜神月完成签到 ,获得积分10
8秒前
8秒前
CodeCraft应助32采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563