亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthesis of geopolymer mortar from biomass ashes and forecasting its compressive strength behaviour

抗压强度 聚合物 灰浆 生物量(生态学) 材料科学 环境科学 复合材料 地质学 海洋学
作者
P.J. Ardhira,Sanjay Kumar Shukla,Dhanya Sathyan
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:21: e03581-e03581
标识
DOI:10.1016/j.cscm.2024.e03581
摘要

The global warming dilemma raised an exigency toward sustainability in the construction industry and compelled scientists to hunt for alternative binders in construction materials. The, geopolymerization as a spectacular technology has arisen as a looming solution to this dilemma. This work assesses the features of geopolymer mortar developed with both industrial and agricultural wastes at ambient temperature curing. The geopolymer mix proportion was evolved in this study using main precursor material as fly ash, ground granulated blast furnace slag (GGBFS), sugarcane bagasse ash (SCBA) or rice husk ash (RHA). Workability and mechanical properties, including compressive strength, flexural strength, and split tensile strength of different mortar mixes with various percentages of RHA and SCBA for 365 days, were evaluated. Geopolymer mortar with 10 % SCBA and 5 % RHA achieved improvements of 25 % and 13.91 % in compressive strength, 10.6 % and 3.5 % in flexural strength, and 35 % and 16.8 % in split tensile strength, respectively. Good geopolymer gel formation is clearly evident from the SEM images of SCBA mortar. The main polymeric bonds Si–O–Al and Si-O-Si are also identified using FTIR. To assess the efficacious use of biomass ashes, resistance to chemical attack using H2SO4, HCl, Na2SiO3, and NaCl solutions for 365 days was studied. It was revealed that SCBA incorporated geopolymer mortar specimens achieved good resistance compared with RHA geopolymer mortar. The relation between the ambient temperature cured geopolymer specimen compressive strength at 28 days and 365 days chemical solution curried geopolymer specimen compressive strength find out using python and obtained R2 values more than 95 %. Also, this research proposed various machine learning techniques such as long short-term memory, support vector regression, random forest regression, XGBOOST, and AdaBOOST algorithms for the prediction of compressive strength of geopolymer using 724 mixture proportions with diverse curing temperatures and varying ages. The XGBOOST algorithm achieved the highest R² value of 0.92, demonstrating its effectiveness for the strength prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
九九完成签到 ,获得积分10
2秒前
yb完成签到,获得积分10
2秒前
莫愁完成签到 ,获得积分10
7秒前
11秒前
Xu槑完成签到,获得积分10
13秒前
LZL完成签到 ,获得积分10
13秒前
18秒前
sonny发布了新的文献求助10
18秒前
方方在努力完成签到,获得积分10
19秒前
21秒前
YWD发布了新的文献求助10
22秒前
左手完成签到,获得积分10
23秒前
sonny完成签到,获得积分10
28秒前
英俊的铭应助星之图采纳,获得10
28秒前
蓝从完成签到,获得积分10
29秒前
热心语山发布了新的文献求助10
29秒前
orixero应助qiii采纳,获得30
34秒前
77发布了新的文献求助20
41秒前
含糊的无声完成签到 ,获得积分10
41秒前
夏日完成签到 ,获得积分10
41秒前
随便吧完成签到 ,获得积分10
44秒前
45秒前
47秒前
SciGPT应助优美翠丝采纳,获得10
47秒前
热心语山完成签到,获得积分10
48秒前
情怀应助hhhh采纳,获得10
49秒前
50秒前
50秒前
54秒前
黑翅鸢完成签到 ,获得积分10
55秒前
再学一分钟完成签到,获得积分10
55秒前
田様应助77采纳,获得10
59秒前
南兮发布了新的文献求助10
1分钟前
张晓芮完成签到 ,获得积分10
1分钟前
枫叶完成签到 ,获得积分10
1分钟前
Dliii完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助TianxingLiu采纳,获得10
1分钟前
1分钟前
qiii发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493637
求助须知:如何正确求助?哪些是违规求助? 4591684
关于积分的说明 14434378
捐赠科研通 4524067
什么是DOI,文献DOI怎么找? 2478597
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436439