Genetically Supported Drug Targets and Dental Traits: A Mendelian Randomization Study

孟德尔随机化 可药性 计算生物学 生物 疾病 数量性状位点 基因 全基因组关联研究 遗传学 单核苷酸多态性 孟德尔遗传 医学 生物信息学 基因型 病理 遗传变异
作者
Liu Liu,Tianyi Wang,Chengchen Duan,Suning Mao,Bo-Tsung Wu,Yue Chen,Dingming Huang,Yubin Cao
出处
期刊:Journal of Dental Research [SAGE]
卷期号:103 (12): 1271-1280 被引量:1
标识
DOI:10.1177/00220345241272045
摘要

Current interventions for oral/dental diseases heavily rely on operative/surgical procedures, while the discovery of novel drug targets may enable access to noninvasive pharmacotherapy. Therefore, this study aims to leverage large-scale data and Mendelian randomization (MR) techniques, utilizing genetic variants as instruments, to identify potential therapeutic targets for oral and dental diseases supported by genetic evidence. By intersecting 4,302 druggable genes with expression quantitative trait loci from 31,684 blood samples, we identified 2,580 druggable targets as exposures. Single nucleotide polymorphisms associated with dental disease/symptom traits were collected from FinnGen R9, the Gene–Lifestyle Interactions in Dental Endpoints consortium, and the UK Biobank to serve as outcomes for both discovery and replication purposes. Through MR analysis, we identified 43 druggable targets for various dental disease/symptom traits. To evaluate the viability of these targets, we replicated the analysis using circulating protein quantitative trait loci as exposures. Additionally, we conducted sensitivity, colocalization, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes annotation, protein–protein interaction analyses, and validated dental trait–associated druggable gene expression in animal models. Among these targets, IL12RB1 (odds ratio [OR], 1.01; 95% confidence interval [CI], 1.01–1.01) and TNF (OR, 0.98; 95% CI, 0.97–0.99) exhibited therapeutic promise for oral ulcers, whereas CXCL10 (OR, 0.84; 95% CI, 0.76–0.91) was for periodontitis. Through a rigorous quality control and validation pipeline, our study yields compelling evidence for these druggable targets, which may enhance the clinical prognosis by developing novel drugs or repurposing existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanxy发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
Mr祥完成签到,获得积分10
2秒前
科研通AI6应助yj采纳,获得10
2秒前
2秒前
慕青应助无私的以冬采纳,获得10
2秒前
Yuan发布了新的文献求助10
3秒前
3秒前
可可奇完成签到 ,获得积分10
4秒前
5秒前
汉堡包应助古都罗伯特采纳,获得10
5秒前
嘿嘿发布了新的文献求助10
5秒前
5秒前
yan儿发布了新的文献求助10
6秒前
6秒前
7秒前
MCS完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI2S应助yinshaoyu21采纳,获得10
8秒前
Yohi发布了新的文献求助30
8秒前
8秒前
8秒前
cute完成签到,获得积分10
8秒前
M20小陈发布了新的文献求助10
9秒前
9秒前
Danmo完成签到,获得积分10
11秒前
11秒前
孝顺的胡萝卜完成签到,获得积分10
11秒前
嘿嘿发布了新的文献求助10
11秒前
小6完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
12秒前
12秒前
LHL完成签到,获得积分10
12秒前
M20小陈完成签到,获得积分10
13秒前
JOHNLJY完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605