可扩展性
计算机科学
虚拟病人
医学
医学教育
操作系统
标识
DOI:10.1080/0142159x.2024.2376879
摘要
Virtual patients (VPs) have long been used to teach and assess clinical reasoning. VPs can be programmed to simulate authentic patient-clinician interactions and to reflect a variety of contextual permutations. However, their use has historically been limited by the high cost and logistical challenges of large-scale implementation. We describe a novel globally-accessible approach to develop low-cost VPs at scale using artificial intelligence (AI) large language models (LLMs). We leveraged OpenAI Generative Pretrained Transformer (GPT) to create and implement two interactive VPs, and created permutations that differed in contextual features. We used systematic prompt engineering to refine a prompt instructing ChatGPT to emulate the patient for a given case scenario, and then provide feedback on clinician performance. We implemented the prompts using GPT-3.5-turbo and GPT-4.0, and created a simple text-only interface using the OpenAI API. GPT-4.0 was far superior. We also conducted limited testing using another LLM (Anthropic Claude), with promising results. We provide the final prompt, case scenarios, and Python code. LLM-VPs represent a 'disruptive innovation' - an innovation that is unmistakably
科研通智能强力驱动
Strongly Powered by AbleSci AI