Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion

计算机科学 人工智能 残余物 背景(考古学) 判别式 比例(比率) 分割 卷积神经网络 模式识别(心理学) 遥感 特征(语言学) 卷积(计算机科学) 图像分辨率 领域(数学) 计算机视觉 人工神经网络 算法 地理 地图学 数学 语言学 哲学 考古 纯数学
作者
Huidong Cao,Yanbing Tian,Bo Liu,Ruihua Wang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-67113-7
摘要

Abstract Employing deep learning techniques for the semantic segmentation of remote sensing images has emerged as a prevalent approach for acquiring information about water bodies. Yet, current models frequently fall short in accurately extracting water bodies from high-resolution remote sensing images, as these images often present intricate details of terrestrial objects and complex backgrounds. Vegetation, shadows, and other objects close to water boundaries have increased similarity to water bodies. Moreover, water bodies in high-resolution images have different boundary complexities, shapes, and sizes. This situation makes it somewhat challenging to accurately distinguish water bodies in high-resolution images. To overcome these difficulties, this paper presents a novel network model named EU-Net, specifically designed to extract water bodies from high-resolution remote sensing images. The proposed EU-Net model, with U-net as the backbone network, incorporates improved residual connections and attention mechanisms, and designs multi-scale dilated convolution and multi-scale feature fusion modules to enhance water body extraction performance in complex scenarios. Specifically, in the proposed model, improved residual connections are introduced to enable the learning of more complex features; the attention mechanism is employed to improve the model's discriminative ability by focusing on important channels and spatial areas. The implemented multi-scale dilated convolution technique enhances the model's receptive field while maintaining the same number of parameters. The designed multi-scale feature fusion module is capable of processing both small-scale details and large-scale structures in images, while simultaneously modeling the spatial context relationships of features at different scales. Experimental results validate the superior performance of EU-Net in accurately identifying water bodies from high-resolution remote sensing images, outperforming current models in terms of water extraction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助可靠岂愈采纳,获得10
刚刚
刚刚
Snowychen完成签到,获得积分10
刚刚
刚刚
充电宝应助silentJeremy采纳,获得10
刚刚
科研通AI5应助莫离采纳,获得10
2秒前
3秒前
4秒前
忧虑的怜晴完成签到 ,获得积分10
4秒前
4秒前
5秒前
美好乐松应助称心小兔子采纳,获得10
5秒前
5秒前
5秒前
guoke完成签到,获得积分10
5秒前
5秒前
7秒前
科研小白完成签到,获得积分10
7秒前
如意宛秋完成签到,获得积分10
7秒前
tzy6665完成签到,获得积分10
7秒前
开放空间完成签到 ,获得积分10
8秒前
DY完成签到,获得积分0
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
天真念烟发布了新的文献求助10
9秒前
kkt发布了新的文献求助10
10秒前
11秒前
yu完成签到,获得积分10
11秒前
CipherSage应助可靠岂愈采纳,获得10
11秒前
fifi发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
llewis完成签到,获得积分10
15秒前
科研通AI5应助QZZ采纳,获得10
16秒前
17秒前
kkt完成签到,获得积分10
17秒前
风筝发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792