Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion

计算机科学 人工智能 残余物 背景(考古学) 判别式 比例(比率) 分割 卷积神经网络 模式识别(心理学) 遥感 特征(语言学) 卷积(计算机科学) 图像分辨率 领域(数学) 计算机视觉 人工神经网络 算法 地理 地图学 数学 语言学 哲学 考古 纯数学
作者
Huidong Cao,Yanbing Tian,Bo Liu,Ruihua Wang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-024-67113-7
摘要

Abstract Employing deep learning techniques for the semantic segmentation of remote sensing images has emerged as a prevalent approach for acquiring information about water bodies. Yet, current models frequently fall short in accurately extracting water bodies from high-resolution remote sensing images, as these images often present intricate details of terrestrial objects and complex backgrounds. Vegetation, shadows, and other objects close to water boundaries have increased similarity to water bodies. Moreover, water bodies in high-resolution images have different boundary complexities, shapes, and sizes. This situation makes it somewhat challenging to accurately distinguish water bodies in high-resolution images. To overcome these difficulties, this paper presents a novel network model named EU-Net, specifically designed to extract water bodies from high-resolution remote sensing images. The proposed EU-Net model, with U-net as the backbone network, incorporates improved residual connections and attention mechanisms, and designs multi-scale dilated convolution and multi-scale feature fusion modules to enhance water body extraction performance in complex scenarios. Specifically, in the proposed model, improved residual connections are introduced to enable the learning of more complex features; the attention mechanism is employed to improve the model's discriminative ability by focusing on important channels and spatial areas. The implemented multi-scale dilated convolution technique enhances the model's receptive field while maintaining the same number of parameters. The designed multi-scale feature fusion module is capable of processing both small-scale details and large-scale structures in images, while simultaneously modeling the spatial context relationships of features at different scales. Experimental results validate the superior performance of EU-Net in accurately identifying water bodies from high-resolution remote sensing images, outperforming current models in terms of water extraction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
纵马长歌完成签到,获得积分10
3秒前
068发布了新的文献求助10
3秒前
3秒前
3秒前
小羊发布了新的文献求助10
3秒前
贪玩的刚发布了新的文献求助10
4秒前
4秒前
tttt发布了新的文献求助10
4秒前
cxxxx应助端庄的墨镜采纳,获得10
4秒前
机智大有完成签到,获得积分10
6秒前
6秒前
1391451653完成签到,获得积分10
6秒前
6秒前
哈哈哩哩啦完成签到 ,获得积分10
7秒前
从容甜瓜发布了新的文献求助10
8秒前
高贵紫槐完成签到,获得积分10
9秒前
9秒前
VV发布了新的文献求助10
9秒前
tttt完成签到,获得积分20
10秒前
无端完成签到,获得积分10
11秒前
大个应助睡醒的尾椎骨采纳,获得10
12秒前
花痴的梦蕊完成签到,获得积分10
12秒前
调皮翠霜发布了新的文献求助10
12秒前
shinysparrow应助羊羽采纳,获得200
13秒前
悦耳的扬完成签到,获得积分20
14秒前
14秒前
英俊的鱼完成签到,获得积分10
16秒前
17秒前
coasting发布了新的文献求助10
18秒前
脑洞疼应助清溪浅水XZ采纳,获得10
18秒前
科研小狗发布了新的文献求助10
18秒前
19秒前
C2H5MgBr完成签到,获得积分10
20秒前
20秒前
20秒前
白小白完成签到,获得积分10
20秒前
天蔚蓝完成签到,获得积分10
20秒前
辞暮发布了新的文献求助10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145912
求助须知:如何正确求助?哪些是违规求助? 2797359
关于积分的说明 7823805
捐赠科研通 2453697
什么是DOI,文献DOI怎么找? 1305818
科研通“疑难数据库(出版商)”最低求助积分说明 627574
版权声明 601491