Accuracy of machine learning in detecting pediatric epileptic seizures: a systematic review and meta-analysis (Preprint)

预印本 荟萃分析 癫痫 梅德林 心理学 医学 计算机科学 人工智能 精神科 万维网 政治学 内科学 法学
作者
Zhuan Zou,Bin Chen,Dongqiong Xiao,Fajuan Tang,Xihong Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e55986-e55986 被引量:1
标识
DOI:10.2196/55986
摘要

Background Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. Objective This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. Methods We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. Results This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. Conclusions Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. Trial Registration PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万事胜意完成签到 ,获得积分10
刚刚
科研通AI6应助默默的青旋采纳,获得30
1秒前
隐形曼青应助小台采纳,获得10
1秒前
1秒前
ruarua发布了新的文献求助10
2秒前
斩荆披棘发布了新的文献求助10
2秒前
Selenaxue完成签到,获得积分10
2秒前
舒适太阳发布了新的文献求助10
3秒前
我是老大应助4444采纳,获得10
3秒前
绿颜色完成签到 ,获得积分10
3秒前
allenwu完成签到,获得积分20
3秒前
语音与发布了新的文献求助10
4秒前
4秒前
4秒前
余如龙完成签到,获得积分10
4秒前
生生不息完成签到,获得积分10
4秒前
CCsci完成签到 ,获得积分10
4秒前
科研通AI2S应助asdfqwer采纳,获得10
4秒前
冷艳的纸鹤完成签到,获得积分10
4秒前
newboy_wxs完成签到,获得积分10
4秒前
利好完成签到 ,获得积分10
5秒前
ATOM完成签到,获得积分20
5秒前
zuojiayu关注了科研通微信公众号
6秒前
sunshitao发布了新的文献求助30
6秒前
媛媛完成签到 ,获得积分10
6秒前
6秒前
Stella应助tdtk采纳,获得30
7秒前
7秒前
爱学习的飞翔人完成签到,获得积分10
7秒前
7秒前
鲤鱼荔枝发布了新的文献求助10
7秒前
辛勤誉完成签到 ,获得积分10
8秒前
耳东完成签到,获得积分10
8秒前
8秒前
哭泣藏花完成签到 ,获得积分10
8秒前
William鉴哲发布了新的文献求助10
8秒前
haoyooo发布了新的文献求助10
8秒前
斯文的道罡完成签到,获得积分10
8秒前
Criminology34应助鹅鹅鹅丶采纳,获得10
9秒前
Stella应助大聪明采纳,获得30
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337738
求助须知:如何正确求助?哪些是违规求助? 4474923
关于积分的说明 13926546
捐赠科研通 4369947
什么是DOI,文献DOI怎么找? 2401099
邀请新用户注册赠送积分活动 1394118
关于科研通互助平台的介绍 1366037