Accuracy of machine learning in detecting pediatric epileptic seizures: a systematic review and meta-analysis (Preprint)

预印本 荟萃分析 癫痫 梅德林 心理学 医学 计算机科学 人工智能 精神科 万维网 政治学 内科学 法学
作者
Zhuan Zou,Bin Chen,Dongqiong Xiao,Fajuan Tang,Xihong Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e55986-e55986 被引量:1
标识
DOI:10.2196/55986
摘要

Background Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. Objective This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. Methods We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. Results This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. Conclusions Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. Trial Registration PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默棉花糖完成签到,获得积分10
刚刚
鹏程应助拼搏君浩采纳,获得10
1秒前
2秒前
老马哥完成签到 ,获得积分0
2秒前
明月念斯人完成签到 ,获得积分10
4秒前
4秒前
淡然冬灵应助锅铲采纳,获得20
5秒前
Rabbit完成签到 ,获得积分10
7秒前
7秒前
现代书雪发布了新的文献求助10
8秒前
宁霸完成签到,获得积分0
9秒前
deniroming完成签到,获得积分0
13秒前
Jasper应助ZR666888采纳,获得10
14秒前
一行完成签到,获得积分10
14秒前
壮观小懒虫完成签到 ,获得积分10
15秒前
勤恳洙应助现代书雪采纳,获得30
19秒前
25秒前
嘿嘿应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
桐桐应助刘慧鑫采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
26秒前
现代书雪完成签到,获得积分20
28秒前
29秒前
跳跃小伙完成签到 ,获得积分10
30秒前
30秒前
123345发布了新的文献求助10
31秒前
32秒前
zyyao发布了新的文献求助20
32秒前
流光发布了新的文献求助10
34秒前
Owen应助2022H采纳,获得20
34秒前
zxer发布了新的文献求助10
35秒前
乐观荣轩完成签到,获得积分10
37秒前
刘慧鑫发布了新的文献求助10
38秒前
香蕉觅云应助讨厌乐跑采纳,获得10
39秒前
2022H完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346