Accuracy of machine learning in detecting pediatric epileptic seizures: a systematic review and meta-analysis (Preprint)

预印本 荟萃分析 癫痫 梅德林 心理学 医学 计算机科学 人工智能 精神科 万维网 政治学 内科学 法学
作者
Zhuan Zou,Bin Chen,Dongqiong Xiao,Fajuan Tang,Xihong Li
出处
期刊:Journal of Medical Internet Research 卷期号:26: e55986-e55986
标识
DOI:10.2196/55986
摘要

Background Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. Objective This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. Methods We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. Results This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. Conclusions Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. Trial Registration PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JSDYCH完成签到,获得积分10
2秒前
3秒前
小橘发布了新的文献求助30
3秒前
Ricochet发布了新的文献求助10
4秒前
想水SCI发布了新的文献求助10
5秒前
ling发布了新的文献求助10
6秒前
干饭完成签到,获得积分10
8秒前
玫瑰星云完成签到,获得积分10
8秒前
keyaner完成签到,获得积分10
8秒前
打打应助lvlv采纳,获得10
9秒前
洵音完成签到,获得积分10
9秒前
present完成签到,获得积分10
10秒前
子车定帮发布了新的文献求助30
10秒前
13秒前
Billy应助Lam采纳,获得30
14秒前
纯真寄文完成签到 ,获得积分10
16秒前
想水SCI完成签到,获得积分10
18秒前
physicalproblem应助橙木木采纳,获得10
18秒前
独立江湖女完成签到 ,获得积分10
19秒前
hanshu完成签到 ,获得积分10
19秒前
19秒前
20秒前
hyman1218完成签到 ,获得积分10
21秒前
ding应助present采纳,获得10
22秒前
用行舍藏完成签到,获得积分10
24秒前
24秒前
英俊的铭应助lirongcas采纳,获得10
25秒前
ling完成签到,获得积分20
26秒前
木子杨发布了新的文献求助10
26秒前
28秒前
28秒前
一切随风完成签到,获得积分10
28秒前
日出东方小磊哥完成签到 ,获得积分10
32秒前
随波逐流发布了新的文献求助10
33秒前
李健的小迷弟应助小田采纳,获得10
33秒前
33秒前
慧喆完成签到 ,获得积分10
33秒前
33秒前
英姑应助miraitowa采纳,获得30
34秒前
子车定帮完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601