Accuracy of machine learning in detecting pediatric epileptic seizures: a systematic review and meta-analysis (Preprint)

预印本 荟萃分析 癫痫 梅德林 心理学 医学 计算机科学 人工智能 精神科 万维网 政治学 内科学 法学
作者
Zhuan Zou,Bin Chen,Dongqiong Xiao,Fajuan Tang,Xihong Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e55986-e55986 被引量:1
标识
DOI:10.2196/55986
摘要

Background Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. Objective This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. Methods We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. Results This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. Conclusions Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. Trial Registration PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗擎完成签到,获得积分10
刚刚
拾一完成签到,获得积分10
刚刚
布可完成签到,获得积分10
刚刚
1秒前
sonya完成签到,获得积分10
1秒前
wxc完成签到 ,获得积分10
1秒前
CH完成签到 ,获得积分10
2秒前
潇洒的新梅完成签到 ,获得积分10
2秒前
铱铂完成签到,获得积分10
2秒前
wy完成签到 ,获得积分10
3秒前
悦耳的迎蕾完成签到,获得积分10
3秒前
yu完成签到,获得积分10
4秒前
公西翠萱完成签到,获得积分10
4秒前
kk发布了新的文献求助10
4秒前
朝夕完成签到 ,获得积分10
4秒前
人生苦短完成签到,获得积分10
4秒前
用行舍藏完成签到,获得积分10
4秒前
fzzf完成签到,获得积分10
5秒前
捞鱼完成签到,获得积分10
5秒前
Andrea_wang发布了新的文献求助10
5秒前
阳光的易真完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
niNe3YUE完成签到,获得积分0
7秒前
一头小眠羊完成签到,获得积分10
9秒前
明理冷梅完成签到 ,获得积分10
9秒前
xxxg郭完成签到 ,获得积分10
9秒前
潇洒黑夜完成签到,获得积分10
9秒前
天想月完成签到,获得积分10
9秒前
心随以动完成签到 ,获得积分10
10秒前
拉长的诺言完成签到,获得积分10
10秒前
10秒前
smottom应助jidou1011采纳,获得10
11秒前
小屁孩完成签到,获得积分0
11秒前
夏天完成签到,获得积分10
11秒前
nature完成签到,获得积分10
11秒前
King完成签到,获得积分0
12秒前
ZMH完成签到,获得积分10
13秒前
123完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
gxfang完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773523
求助须知:如何正确求助?哪些是违规求助? 5612027
关于积分的说明 15431474
捐赠科研通 4905977
什么是DOI,文献DOI怎么找? 2639992
邀请新用户注册赠送积分活动 1587854
关于科研通互助平台的介绍 1542906