Accuracy of machine learning in detecting pediatric epileptic seizures: a systematic review and meta-analysis (Preprint)

预印本 荟萃分析 癫痫 梅德林 心理学 医学 计算机科学 人工智能 精神科 万维网 政治学 内科学 法学
作者
Zhuan Zou,Bin Chen,Dongqiong Xiao,Fajuan Tang,Xihong Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e55986-e55986
标识
DOI:10.2196/55986
摘要

Background Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. Objective This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. Methods We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. Results This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. Conclusions Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. Trial Registration PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
竹叶听清发布了新的文献求助10
3秒前
3秒前
Anna完成签到,获得积分10
3秒前
机灵的鸣凤完成签到,获得积分10
3秒前
Chen发布了新的文献求助10
3秒前
呐呐发布了新的文献求助10
4秒前
4秒前
Akim应助浅色墨水采纳,获得10
5秒前
健忘症发布了新的文献求助10
5秒前
于鑫发布了新的文献求助10
6秒前
ding应助外星人歪歪歪采纳,获得10
6秒前
阿冬呐完成签到,获得积分10
7秒前
善学以致用应助忘忧采纳,获得10
7秒前
huihui完成签到,获得积分10
7秒前
提拉米草完成签到,获得积分10
7秒前
懒羊羊完成签到,获得积分10
7秒前
刘俊完成签到,获得积分10
8秒前
萌酱完成签到,获得积分10
8秒前
8秒前
123完成签到,获得积分10
8秒前
進擊的巨人完成签到,获得积分10
9秒前
提拉米草发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
69应助科研鸟采纳,获得10
13秒前
麦丰完成签到,获得积分10
13秒前
pluto应助嗯哼哈哈采纳,获得80
14秒前
白桃乌龙完成签到,获得积分10
15秒前
OMIT发布了新的文献求助10
15秒前
wu完成签到 ,获得积分10
16秒前
qingkong完成签到 ,获得积分10
16秒前
林橙发布了新的文献求助10
16秒前
Owen应助liuxh123采纳,获得10
17秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403