清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accuracy of machine learning in detecting pediatric epileptic seizures: a systematic review and meta-analysis (Preprint)

预印本 荟萃分析 癫痫 梅德林 心理学 医学 计算机科学 人工智能 精神科 万维网 政治学 内科学 法学
作者
Zhuan Zou,Bin Chen,Dongqiong Xiao,Fajuan Tang,Xihong Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e55986-e55986 被引量:1
标识
DOI:10.2196/55986
摘要

Background Real-time monitoring of pediatric epileptic seizures poses a significant challenge in clinical practice. In recent years, machine learning (ML) has attracted substantial attention from researchers for diagnosing and treating neurological diseases, leading to its application for detecting pediatric epileptic seizures. However, systematic evidence substantiating its feasibility remains limited. Objective This systematic review aimed to consolidate the existing evidence regarding the effectiveness of ML in monitoring pediatric epileptic seizures with an effort to provide an evidence-based foundation for the development and enhancement of intelligent tools in the future. Methods We conducted a systematic search of the PubMed, Cochrane, Embase, and Web of Science databases for original studies focused on the detection of pediatric epileptic seizures using ML, with a cutoff date of August 27, 2023. The risk of bias in eligible studies was assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies–2). Meta-analyses were performed to evaluate the C-index and the diagnostic 4-grid table, using a bivariate mixed-effects model for the latter. We also examined publication bias for the C-index by using funnel plots and the Egger test. Results This systematic review included 28 original studies, with 15 studies on ML and 13 on deep learning (DL). All these models were based on electroencephalography data of children. The pooled C-index, sensitivity, specificity, and accuracy of ML in the training set were 0.76 (95% CI 0.69-0.82), 0.77 (95% CI 0.73-0.80), 0.74 (95% CI 0.70-0.77), and 0.75 (95% CI 0.72-0.77), respectively. In the validation set, the pooled C-index, sensitivity, specificity, and accuracy of ML were 0.73 (95% CI 0.67-0.79), 0.88 (95% CI 0.83-0.91), 0.83 (95% CI 0.71-0.90), and 0.78 (95% CI 0.73-0.82), respectively. Meanwhile, the pooled C-index of DL in the validation set was 0.91 (95% CI 0.88-0.94), with sensitivity, specificity, and accuracy being 0.89 (95% CI 0.85-0.91), 0.91 (95% CI 0.88-0.93), and 0.89 (95% CI 0.86-0.92), respectively. Conclusions Our systematic review demonstrates promising accuracy of artificial intelligence methods in epilepsy detection. DL appears to offer higher detection accuracy than ML. These findings support the development of DL-based early-warning tools in future research. Trial Registration PROSPERO CRD42023467260; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023467260

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liverisess完成签到,获得积分10
24秒前
了了完成签到,获得积分10
46秒前
56秒前
冷静尔芙发布了新的文献求助10
1分钟前
shihong_li完成签到,获得积分10
1分钟前
冷静尔芙完成签到,获得积分10
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
freshfire完成签到,获得积分10
1分钟前
Jasperlee完成签到 ,获得积分10
1分钟前
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
2分钟前
2分钟前
机智的孤兰完成签到 ,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小蘑菇应助Nini采纳,获得10
2分钟前
我是老大应助Benhnhk21采纳,获得30
2分钟前
iris发布了新的文献求助10
2分钟前
喝可乐的猫完成签到 ,获得积分10
2分钟前
Akim应助iris采纳,获得10
2分钟前
lemon完成签到 ,获得积分10
3分钟前
喜悦的唇彩完成签到,获得积分10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
woxinyouyou完成签到,获得积分10
3分钟前
房天川完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Perry完成签到,获得积分0
3分钟前
4分钟前
Nini发布了新的文献求助10
4分钟前
务实鞅完成签到 ,获得积分10
4分钟前
YY完成签到,获得积分10
4分钟前
4分钟前
周运来完成签到,获得积分10
5分钟前
寒冷的月亮完成签到 ,获得积分10
5分钟前
5分钟前
nav完成签到 ,获得积分10
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
fox发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438686
求助须知:如何正确求助?哪些是违规求助? 4549812
关于积分的说明 14221031
捐赠科研通 4470740
什么是DOI,文献DOI怎么找? 2450000
邀请新用户注册赠送积分活动 1440962
关于科研通互助平台的介绍 1417452