Progress in Energy−Safety Balanced Cocrystallization of Four Commercially Attractive Nitramines

起爆 高能材料 化学 能量密度 材料科学 纳米技术 爆炸物 工程物理 有机化学 物理
作者
Veerabhadragouda B. Patil,Svatopluk Zeman
出处
期刊:Crystal Growth & Design [American Chemical Society]
卷期号:24 (17): 7361-7388 被引量:3
标识
DOI:10.1021/acs.cgd.4c00686
摘要

In 2011, cocrystallization of energetic materials became a hot topic and a pathway to overcome the energy−safety contradiction; especially for commercially attractive nitramines, it became the first preference for researchers. The present review focuses on the energetic−energetic cocrystallization of four commercially attractive nitramines, CL20, HMX, BCHMX, and RDX, the structural aspects of these cocrystals, and their influence on thermochemical and detonation properties. Cocrystallization has proven to be a crystal engineering technique to achieve the safety and morphological suitability of energetic−energetic cocrystals (EECCs). Overall, in most of the cases, the impact sensitivities of EECCs are decreased, and this is a phenomenal change; however, it needed to adjust with detonation properties slightly, and it is negligible if the coformer energetic materials (EMs) are properly chosen. There are other notable variations in the crystal morphologies and packing of crystals, including key properties such as relatively high density and melting point. These changes occur due to the binding energy, trigger bond energy, trigger bond length, and cohesive energy density of EECCs during cocrystallization. Researchers highly focused on cocrystallization of these four nitramines; earlier reported methods are lacking in selectivity and scalability. When it comes to adoption to industrial scale production of EECCs, it is more difficult. We conducted a thorough literature survey. Also we discussed about a recently developed VPSZ coagglomeration method, which provides a huge opportunity to tune the key properties and performance of existing energetic materials and is easy to scale up to the industrial level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Elaine采纳,获得10
刚刚
Ymj发布了新的文献求助10
1秒前
JamesPei应助yyf采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
enoot发布了新的文献求助10
2秒前
2秒前
盘尼西林完成签到 ,获得积分10
2秒前
2秒前
3秒前
liutaili完成签到,获得积分10
3秒前
PXY完成签到,获得积分10
3秒前
4秒前
DrLiu发布了新的文献求助10
4秒前
WxChen发布了新的文献求助10
4秒前
小马甲应助仄兀采纳,获得10
4秒前
YAN关闭了YAN文献求助
4秒前
杏花饼发布了新的文献求助10
4秒前
筱星完成签到,获得积分10
5秒前
aaaaa发布了新的文献求助10
5秒前
宇文宛菡发布了新的文献求助10
5秒前
jacky完成签到,获得积分10
5秒前
司徒迎曼发布了新的文献求助10
5秒前
5秒前
启航完成签到,获得积分10
5秒前
6秒前
笋蒸鱼完成签到,获得积分10
6秒前
liutaili发布了新的文献求助10
6秒前
6秒前
睡到人间煮饭时完成签到,获得积分10
6秒前
7秒前
清澈水眸完成签到 ,获得积分10
7秒前
圈圈发布了新的文献求助10
7秒前
zhanlonglsj关注了科研通微信公众号
7秒前
缥缈的万天完成签到 ,获得积分10
8秒前
木禾火发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740