亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based early prediction of rice-growing fields using multi-temporal Sentinel-1 synthetic aperture radar and Sentinel-2 multispectral data

合成孔径雷达 多光谱图像 遥感 作物 种植 环境科学 雷达 相关系数 粮食安全 水田 农业工程 随机森林 数学 计算机科学 地理 人工智能 统计 农业 工程类 电信 林业 考古
作者
Nguyễn Thanh Sơn,Chi-Farn Chen,Huan-Sheng Lin,Youg-Sin Cheng,Cheng-Ru Chen,Chein-Hui Syu,Yiting Zhang,Tsang‐Sen Liu,Piero Toscano,Shu‐Ling Chen,Shih‐Hsiang Chen
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (03)
标识
DOI:10.1117/1.jrs.18.038503
摘要

Rice is the most important food crop in Taiwan. Early information on rice-growing conditions is thus vital for estimating rice production to guarantee national food security and grain exports. The rice-harvested area is conventionally inspected twice a year by costly interpretation of aerial photographs and intensive labor-field surveys. However, such methods of rice monitoring are inadequate for providing the government with timely information on rice-cultivated conditions. This study aims to use time series of Sentinel-1 synthetic aperture radar and Sentinel-2 multispectral data to develop a machine-learning approach for the early prediction of rice-growing fields in Taiwan. An object-based random forest (OBRF) was developed to process remotely sensed data for rice-cropping seasons from 2018 to 2021. The prediction results compared with the reference data showed that rice-growing fields could be accurately predicted before harvest, about three months for the first crop and two months for the second crop. The F-score and Kappa coefficient values achieved for the first crop were 0.87 and 0.85, and those for the second crop were 0.72 and 0.71, respectively. These findings were reaffirmed by close agreement between the official statistics and the rice area estimated from the satellite data, with the correlation coefficient of determination (R2) value greater than 0.96. A large portion of the first crop's rice areas was abandoned or converted to upland crop cultivation in the second crop, which was confirmed by a visual interpretation of Landsat images and official statistics. Ultimately, this study proved the efficacy of using Sentinel-1/2 images and OBRF for the early prediction of rice-cultivated fields in Taiwan. Quantitative and geographical information produced from such methods was essential for the early estimation of rice production to nationally address food security concerns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致咖啡完成签到 ,获得积分10
1分钟前
慕容天磊完成签到,获得积分10
2分钟前
爱静静完成签到,获得积分0
2分钟前
正直夜安完成签到 ,获得积分10
3分钟前
5分钟前
7分钟前
Ann完成签到,获得积分10
7分钟前
桃汁荔枝完成签到 ,获得积分10
7分钟前
连安阳完成签到,获得积分10
7分钟前
zsmj23完成签到 ,获得积分0
8分钟前
丘比特应助科研通管家采纳,获得30
8分钟前
田様应助科研通管家采纳,获得80
8分钟前
Hello应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
顾矜应助方方采纳,获得10
9分钟前
桃汁荔枝关注了科研通微信公众号
9分钟前
9分钟前
方方发布了新的文献求助10
10分钟前
sharronjxx应助方方采纳,获得10
10分钟前
方方完成签到,获得积分10
10分钟前
慕青应助科研通管家采纳,获得10
10分钟前
稻子完成签到 ,获得积分10
10分钟前
空曲完成签到 ,获得积分10
11分钟前
15分钟前
15分钟前
吕懿发布了新的文献求助10
15分钟前
标致诗双发布了新的文献求助10
15分钟前
大个应助吕懿采纳,获得10
15分钟前
16分钟前
标致诗双完成签到,获得积分10
16分钟前
18分钟前
大模型应助摇摇猪采纳,获得10
20分钟前
21分钟前
新奇完成签到 ,获得积分10
21分钟前
小蘑菇应助oleskarabach采纳,获得10
22分钟前
通科研完成签到 ,获得积分10
23分钟前
23分钟前
科研通AI2S应助谢小卷采纳,获得20
23分钟前
23分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052552
求助须知:如何正确求助?哪些是违规求助? 2709826
关于积分的说明 7418203
捐赠科研通 2354370
什么是DOI,文献DOI怎么找? 1245934
科研通“疑难数据库(出版商)”最低求助积分说明 605934
版权声明 595921