亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based early prediction of rice-growing fields using multi-temporal Sentinel-1 synthetic aperture radar and Sentinel-2 multispectral data

合成孔径雷达 多光谱图像 遥感 作物 种植 环境科学 雷达 相关系数 粮食安全 水田 农业工程 随机森林 数学 计算机科学 地理 人工智能 统计 农业 工程类 电信 林业 考古
作者
Nguyễn Thanh Sơn,Chi-Farn Chen,Huan-Sheng Lin,Youg-Sin Cheng,Cheng-Ru Chen,Chein-Hui Syu,Yiting Zhang,Tsang‐Sen Liu,Piero Toscano,Shu‐Ling Chen,Shih‐Hsiang Chen
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (03) 被引量:1
标识
DOI:10.1117/1.jrs.18.038503
摘要

Rice is the most important food crop in Taiwan. Early information on rice-growing conditions is thus vital for estimating rice production to guarantee national food security and grain exports. The rice-harvested area is conventionally inspected twice a year by costly interpretation of aerial photographs and intensive labor-field surveys. However, such methods of rice monitoring are inadequate for providing the government with timely information on rice-cultivated conditions. This study aims to use time series of Sentinel-1 synthetic aperture radar and Sentinel-2 multispectral data to develop a machine-learning approach for the early prediction of rice-growing fields in Taiwan. An object-based random forest (OBRF) was developed to process remotely sensed data for rice-cropping seasons from 2018 to 2021. The prediction results compared with the reference data showed that rice-growing fields could be accurately predicted before harvest, about three months for the first crop and two months for the second crop. The F-score and Kappa coefficient values achieved for the first crop were 0.87 and 0.85, and those for the second crop were 0.72 and 0.71, respectively. These findings were reaffirmed by close agreement between the official statistics and the rice area estimated from the satellite data, with the correlation coefficient of determination (R2) value greater than 0.96. A large portion of the first crop's rice areas was abandoned or converted to upland crop cultivation in the second crop, which was confirmed by a visual interpretation of Landsat images and official statistics. Ultimately, this study proved the efficacy of using Sentinel-1/2 images and OBRF for the early prediction of rice-cultivated fields in Taiwan. Quantitative and geographical information produced from such methods was essential for the early estimation of rice production to nationally address food security concerns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
zyw发布了新的文献求助10
11秒前
慕青应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得30
16秒前
称心的砖家完成签到,获得积分10
35秒前
36秒前
xinqing发布了新的文献求助10
41秒前
42秒前
丘比特应助zyw采纳,获得10
45秒前
52秒前
xinqing完成签到,获得积分20
53秒前
56秒前
英勇初曼发布了新的文献求助10
58秒前
酷波er应助xinqing采纳,获得10
1分钟前
John完成签到,获得积分10
1分钟前
耶格尔完成签到 ,获得积分0
1分钟前
1分钟前
toto发布了新的文献求助10
1分钟前
toto完成签到,获得积分10
1分钟前
李健应助科研通管家采纳,获得10
2分钟前
2分钟前
宇宙无敌狂暴龙血战士完成签到,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
王一一完成签到 ,获得积分10
2分钟前
热心平萱发布了新的文献求助10
3分钟前
科研通AI6.2应助英勇初曼采纳,获得10
3分钟前
hdd完成签到,获得积分10
3分钟前
小彭陪小崔读个研完成签到 ,获得积分10
3分钟前
iex777完成签到 ,获得积分10
3分钟前
小二郎应助南湾不夏采纳,获得10
3分钟前
Johan完成签到 ,获得积分10
3分钟前
3分钟前
DrJiang完成签到,获得积分10
3分钟前
南湾不夏发布了新的文献求助10
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
HY发布了新的文献求助20
4分钟前
昵称完成签到,获得积分0
4分钟前
jcksonzhj完成签到,获得积分10
4分钟前
南陆赏降英完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875756
求助须知:如何正确求助?哪些是违规求助? 6520795
关于积分的说明 15677607
捐赠科研通 4993843
什么是DOI,文献DOI怎么找? 2691645
邀请新用户注册赠送积分活动 1633853
关于科研通互助平台的介绍 1591507