Tree-based ensemble machine learning models in the prediction of acute respiratory distress syndrome following cardiac surgery: a multicenter cohort study

急性呼吸窘迫 医学 队列 心脏外科 队列研究 重症监护医学 机器学习 人工智能 计算机科学 心脏病学 内科学
作者
Hang Zhang,Dewei Qian,Xiaomiao Zhang,Pan Meng,Weiran Huang,Tongtong Gu,Yongliang Fan,Kele Xu,Yuchen Wang,Min Yu,Zhongxiang Yuan,Xin Chen,Qingnan Zhao,Zheng Ruan
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-05395-1
摘要

Abstract Background Acute respiratory distress syndrome (ARDS) after cardiac surgery is a severe respiratory complication with high mortality and morbidity. Traditional clinical approaches may lead to under recognition of this heterogeneous syndrome, potentially resulting in diagnosis delay. This study aims to develop and external validate seven machine learning (ML) models, trained on electronic health records data, for predicting ARDS after cardiac surgery. Methods This multicenter, observational cohort study included patients who underwent cardiac surgery in the training and testing cohorts (data from Nanjing First Hospital), as well as those patients who had cardiac surgery in a validation cohort (data from Shanghai General Hospital). The number of important features was determined using the sliding windows sequential forward feature selection method (SWSFS). We developed a set of tree-based ML models, including Decision Tree, GBDT, AdaBoost, XGBoost, LightGBM, Random Forest, and Deep Forest. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and Brier score. The SHapley Additive exPlanation (SHAP) techinque was employed to interpret the ML model. Furthermore, a comparison was made between the ML models and traditional scoring systems. ARDS is defined according to the Berlin definition. Results A total of 1996 patients who had cardiac surgery were included in the study. The top five important features identified by the SWSFS were chronic obstructive pulmonary disease, preoperative albumin, central venous pressure_T4, cardiopulmonary bypass time, and left ventricular ejection fraction. Among the seven ML models, Deep Forest demonstrated the best performance, with an AUC of 0.882 and a Brier score of 0.809 in the validation cohort. Notably, the SHAP values effectively illustrated the contribution of the 13 features attributed to the model output and the individual feature's effect on model prediction. In addition, the ensemble ML models demonstrated better performance than the other six traditional scoring systems. Conclusions Our study identified 13 important features and provided multiple ML models to enhance the risk stratification for ARDS after cardiac surgery. Using these predictors and ML models might provide a basis for early diagnostic and preventive strategies in the perioperative management of ARDS patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rover完成签到 ,获得积分10
刚刚
DOUDOU发布了新的文献求助10
1秒前
MMMMathilda23发布了新的文献求助10
1秒前
3秒前
雪白鸿涛发布了新的文献求助30
3秒前
SciGPT应助Sean采纳,获得10
4秒前
锣大炮完成签到,获得积分10
4秒前
粗心的chen发布了新的文献求助10
5秒前
充电宝应助栀梦采纳,获得10
7秒前
科研通AI5应助超帅的傀斗采纳,获得30
8秒前
tongxiehou1发布了新的文献求助10
8秒前
Yajuan发布了新的文献求助10
8秒前
13秒前
16秒前
满意的柏柳完成签到 ,获得积分10
18秒前
栀梦完成签到,获得积分10
18秒前
tongxiehou1完成签到,获得积分10
18秒前
哩吖完成签到,获得积分10
19秒前
19秒前
gungun发布了新的文献求助10
20秒前
共享精神应助乔乔兔采纳,获得10
21秒前
tao发布了新的文献求助10
22秒前
23秒前
23秒前
wxx完成签到,获得积分10
24秒前
zyl发布了新的文献求助10
26秒前
共享精神应助消烦员采纳,获得10
27秒前
科研通AI2S应助龙的传人采纳,获得10
27秒前
28秒前
McbxM发布了新的文献求助10
28秒前
睡个好觉发布了新的文献求助10
28秒前
35秒前
McbxM完成签到,获得积分10
35秒前
37秒前
37秒前
henxi给henxi的求助进行了留言
38秒前
38秒前
wry完成签到,获得积分10
39秒前
41秒前
文艺安青完成签到,获得积分20
41秒前
高分求助中
Generic and Innovator Drugs: A Guide to Fda Approval Requirements 500
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3707920
求助须知:如何正确求助?哪些是违规求助? 3256447
关于积分的说明 9900200
捐赠科研通 2969011
什么是DOI,文献DOI怎么找? 1628271
邀请新用户注册赠送积分活动 772038
科研通“疑难数据库(出版商)”最低求助积分说明 743611