Tree-based ensemble machine learning models in the prediction of acute respiratory distress syndrome following cardiac surgery: a multicenter cohort study

急性呼吸窘迫 医学 队列 心脏外科 队列研究 重症监护医学 机器学习 人工智能 计算机科学 心脏病学 内科学
作者
Hang Zhang,Dewei Qian,Xiaomiao Zhang,Pan Meng,Weiran Huang,Tongtong Gu,Yongliang Fan,Kele Xu,Yuchen Wang,Min Yu,Zhongxiang Yuan,Xin Chen,Qingnan Zhao,Zheng Ruan
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-05395-1
摘要

Abstract Background Acute respiratory distress syndrome (ARDS) after cardiac surgery is a severe respiratory complication with high mortality and morbidity. Traditional clinical approaches may lead to under recognition of this heterogeneous syndrome, potentially resulting in diagnosis delay. This study aims to develop and external validate seven machine learning (ML) models, trained on electronic health records data, for predicting ARDS after cardiac surgery. Methods This multicenter, observational cohort study included patients who underwent cardiac surgery in the training and testing cohorts (data from Nanjing First Hospital), as well as those patients who had cardiac surgery in a validation cohort (data from Shanghai General Hospital). The number of important features was determined using the sliding windows sequential forward feature selection method (SWSFS). We developed a set of tree-based ML models, including Decision Tree, GBDT, AdaBoost, XGBoost, LightGBM, Random Forest, and Deep Forest. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and Brier score. The SHapley Additive exPlanation (SHAP) techinque was employed to interpret the ML model. Furthermore, a comparison was made between the ML models and traditional scoring systems. ARDS is defined according to the Berlin definition. Results A total of 1996 patients who had cardiac surgery were included in the study. The top five important features identified by the SWSFS were chronic obstructive pulmonary disease, preoperative albumin, central venous pressure_T4, cardiopulmonary bypass time, and left ventricular ejection fraction. Among the seven ML models, Deep Forest demonstrated the best performance, with an AUC of 0.882 and a Brier score of 0.809 in the validation cohort. Notably, the SHAP values effectively illustrated the contribution of the 13 features attributed to the model output and the individual feature's effect on model prediction. In addition, the ensemble ML models demonstrated better performance than the other six traditional scoring systems. Conclusions Our study identified 13 important features and provided multiple ML models to enhance the risk stratification for ARDS after cardiac surgery. Using these predictors and ML models might provide a basis for early diagnostic and preventive strategies in the perioperative management of ARDS patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁依欧欧完成签到,获得积分10
1秒前
3秒前
小小郭发布了新的文献求助10
3秒前
小二郎应助兰彻采纳,获得10
3秒前
xingchenpang完成签到,获得积分10
3秒前
google发布了新的文献求助20
5秒前
6秒前
6秒前
7秒前
hang完成签到,获得积分10
7秒前
任奋斗关注了科研通微信公众号
8秒前
丘比特应助sukasuka采纳,获得10
9秒前
ShengxK完成签到,获得积分10
9秒前
江汛完成签到,获得积分10
9秒前
小猫宝发布了新的文献求助10
10秒前
11秒前
韩乐乐发布了新的文献求助10
11秒前
Bo发布了新的文献求助10
11秒前
水电费黑科技完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
16秒前
毫米完成签到,获得积分20
17秒前
烫烫烫发布了新的文献求助10
18秒前
18秒前
18秒前
zfy发布了新的文献求助10
19秒前
星辰大海应助白华苍松采纳,获得10
19秒前
暮霭沉沉应助诚心仙人掌采纳,获得10
19秒前
迷路的夏之完成签到,获得积分10
22秒前
123完成签到 ,获得积分10
22秒前
加加发布了新的文献求助10
22秒前
南山完成签到,获得积分10
23秒前
Laisy完成签到,获得积分10
23秒前
白雪皑皑完成签到 ,获得积分10
23秒前
任奋斗发布了新的文献求助10
24秒前
25秒前
27秒前
脑洞疼应助加加采纳,获得10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943