A Deep Learning Quantile Regression Photovoltaic Power-Forecasting Method under a Priori Knowledge Injection

计算机科学 分位数回归 分位数 人工智能 光伏系统 深度学习 卷积神经网络 概率预测 概率逻辑 机器学习 工程类 计量经济学 数学 电气工程
作者
Xiaoying Ren,Yongqian Liu,Fei Zhang,Lingfeng Li
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (16): 4026-4026 被引量:4
标识
DOI:10.3390/en17164026
摘要

Accurate and reliable PV power probabilistic-forecasting results can help grid operators and market participants better understand and cope with PV energy volatility and uncertainty and improve the efficiency of energy dispatch and operation, which plays an important role in application scenarios such as power market trading, risk management, and grid scheduling. In this paper, an innovative deep learning quantile regression ultra-short-term PV power-forecasting method is proposed. This method employs a two-branch deep learning architecture to forecast the conditional quantile of PV power; one branch is a QR-based stacked conventional convolutional neural network (QR_CNN), and the other is a QR-based temporal convolutional network (QR_TCN). The stacked CNN is used to focus on learning short-term local dependencies in PV power sequences, and the TCN is used to learn long-term temporal constraints between multi-feature data. These two branches extract different features from input data with different prior knowledge. By jointly training the two branches, the model is able to learn the probability distribution of PV power and obtain discrete conditional quantile forecasts of PV power in the ultra-short term. Then, based on these conditional quantile forecasts, a kernel density estimation method is used to estimate the PV power probability density function. The proposed method innovatively employs two ways of a priori knowledge injection: constructing a differential sequence of historical power as an input feature to provide more information about the ultrashort-term dynamics of the PV power and, at the same time, dividing it, together with all the other features, into two sets of inputs that contain different a priori features according to the demand of the forecasting task; and the dual-branching model architecture is designed to deeply match the data of the two sets of input features to the corresponding branching model computational mechanisms. The two a priori knowledge injection methods provide more effective features for the model and improve the forecasting performance and understandability of the model. The performance of the proposed model in point forecasting, interval forecasting, and probabilistic forecasting is comprehensively evaluated through the case of a real PV plant. The experimental results show that the proposed model performs well on the task of ultra-short-term PV power probabilistic forecasting and outperforms other state-of-the-art deep learning models in the field combined with QR. The proposed method in this paper can provide technical support for application scenarios such as energy scheduling, market trading, and risk management on the ultra-short-term time scale of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助静加油采纳,获得10
1秒前
谦让羽毛发布了新的文献求助10
1秒前
pluto发布了新的文献求助10
2秒前
2秒前
林平之完成签到,获得积分10
2秒前
3秒前
零点起步完成签到,获得积分10
4秒前
小黑爱搞科研完成签到,获得积分20
4秒前
zhaopeipei关注了科研通微信公众号
4秒前
4秒前
YapengWang完成签到,获得积分10
6秒前
8秒前
9C完成签到,获得积分10
8秒前
芭芭拉发布了新的文献求助10
9秒前
10秒前
旅行的小七仔完成签到 ,获得积分10
11秒前
FashionBoy应助yidiandian采纳,获得10
11秒前
12秒前
snoke完成签到,获得积分10
13秒前
13秒前
Theprisoners完成签到,获得积分10
14秒前
zhangyu应助飞云采纳,获得10
14秒前
Syx_rcees发布了新的文献求助10
15秒前
15秒前
15秒前
大模型应助绝情继父采纳,获得10
15秒前
orixero应助lyg616358001采纳,获得10
16秒前
16秒前
17秒前
17秒前
小马甲应助潇洒的平松采纳,获得10
17秒前
慕青应助SSY采纳,获得10
17秒前
wanci应助pluto采纳,获得10
17秒前
zzazz完成签到,获得积分10
18秒前
流川封发布了新的文献求助10
18秒前
19秒前
张文懿发布了新的文献求助10
20秒前
YapengWang发布了新的文献求助10
20秒前
yuan发布了新的文献求助20
20秒前
tuanheqi发布了新的文献求助20
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020