亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Quantile Regression Photovoltaic Power-Forecasting Method under a Priori Knowledge Injection

计算机科学 分位数回归 分位数 人工智能 光伏系统 深度学习 卷积神经网络 概率预测 概率逻辑 机器学习 工程类 计量经济学 数学 电气工程
作者
Xiaoying Ren,Yongqian Liu,Fei Zhang,Lingfeng Li
出处
期刊:Energies [MDPI AG]
卷期号:17 (16): 4026-4026 被引量:4
标识
DOI:10.3390/en17164026
摘要

Accurate and reliable PV power probabilistic-forecasting results can help grid operators and market participants better understand and cope with PV energy volatility and uncertainty and improve the efficiency of energy dispatch and operation, which plays an important role in application scenarios such as power market trading, risk management, and grid scheduling. In this paper, an innovative deep learning quantile regression ultra-short-term PV power-forecasting method is proposed. This method employs a two-branch deep learning architecture to forecast the conditional quantile of PV power; one branch is a QR-based stacked conventional convolutional neural network (QR_CNN), and the other is a QR-based temporal convolutional network (QR_TCN). The stacked CNN is used to focus on learning short-term local dependencies in PV power sequences, and the TCN is used to learn long-term temporal constraints between multi-feature data. These two branches extract different features from input data with different prior knowledge. By jointly training the two branches, the model is able to learn the probability distribution of PV power and obtain discrete conditional quantile forecasts of PV power in the ultra-short term. Then, based on these conditional quantile forecasts, a kernel density estimation method is used to estimate the PV power probability density function. The proposed method innovatively employs two ways of a priori knowledge injection: constructing a differential sequence of historical power as an input feature to provide more information about the ultrashort-term dynamics of the PV power and, at the same time, dividing it, together with all the other features, into two sets of inputs that contain different a priori features according to the demand of the forecasting task; and the dual-branching model architecture is designed to deeply match the data of the two sets of input features to the corresponding branching model computational mechanisms. The two a priori knowledge injection methods provide more effective features for the model and improve the forecasting performance and understandability of the model. The performance of the proposed model in point forecasting, interval forecasting, and probabilistic forecasting is comprehensively evaluated through the case of a real PV plant. The experimental results show that the proposed model performs well on the task of ultra-short-term PV power probabilistic forecasting and outperforms other state-of-the-art deep learning models in the field combined with QR. The proposed method in this paper can provide technical support for application scenarios such as energy scheduling, market trading, and risk management on the ultra-short-term time scale of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muhum完成签到 ,获得积分10
6秒前
慕青应助过氧化氢采纳,获得30
19秒前
27秒前
小黄鸭完成签到,获得积分10
32秒前
zsmj23完成签到 ,获得积分0
38秒前
AurorY发布了新的文献求助10
48秒前
49秒前
qiuer7应助科研通管家采纳,获得10
49秒前
Folivo完成签到,获得积分10
1分钟前
1分钟前
扣子完成签到,获得积分10
1分钟前
Pengzhuhuai发布了新的文献求助10
1分钟前
1分钟前
Pengzhuhuai完成签到,获得积分10
1分钟前
过氧化氢发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Cola发布了新的文献求助10
1分钟前
希望天下0贩的0应助欣欣采纳,获得10
1分钟前
遇上就这样吧应助ruby采纳,获得30
1分钟前
矢思然完成签到,获得积分10
1分钟前
Cola完成签到,获得积分20
1分钟前
1分钟前
欣欣发布了新的文献求助10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
110o发布了新的文献求助10
2分钟前
2分钟前
qiuer7应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
llll完成签到 ,获得积分0
2分钟前
阳阿儿发布了新的文献求助30
3分钟前
隐形曼青应助believe采纳,获得10
3分钟前
3分钟前
believe发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422553
求助须知:如何正确求助?哪些是违规求助? 4537467
关于积分的说明 14157445
捐赠科研通 4454064
什么是DOI,文献DOI怎么找? 2443173
邀请新用户注册赠送积分活动 1434482
关于科研通互助平台的介绍 1411627