已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Quantile Regression Photovoltaic Power-Forecasting Method under a Priori Knowledge Injection

计算机科学 分位数回归 分位数 人工智能 光伏系统 深度学习 卷积神经网络 概率预测 概率逻辑 机器学习 工程类 计量经济学 数学 电气工程
作者
Xiaoying Ren,Yongqian Liu,Fei Zhang,Lingfeng Li
出处
期刊:Energies [MDPI AG]
卷期号:17 (16): 4026-4026 被引量:4
标识
DOI:10.3390/en17164026
摘要

Accurate and reliable PV power probabilistic-forecasting results can help grid operators and market participants better understand and cope with PV energy volatility and uncertainty and improve the efficiency of energy dispatch and operation, which plays an important role in application scenarios such as power market trading, risk management, and grid scheduling. In this paper, an innovative deep learning quantile regression ultra-short-term PV power-forecasting method is proposed. This method employs a two-branch deep learning architecture to forecast the conditional quantile of PV power; one branch is a QR-based stacked conventional convolutional neural network (QR_CNN), and the other is a QR-based temporal convolutional network (QR_TCN). The stacked CNN is used to focus on learning short-term local dependencies in PV power sequences, and the TCN is used to learn long-term temporal constraints between multi-feature data. These two branches extract different features from input data with different prior knowledge. By jointly training the two branches, the model is able to learn the probability distribution of PV power and obtain discrete conditional quantile forecasts of PV power in the ultra-short term. Then, based on these conditional quantile forecasts, a kernel density estimation method is used to estimate the PV power probability density function. The proposed method innovatively employs two ways of a priori knowledge injection: constructing a differential sequence of historical power as an input feature to provide more information about the ultrashort-term dynamics of the PV power and, at the same time, dividing it, together with all the other features, into two sets of inputs that contain different a priori features according to the demand of the forecasting task; and the dual-branching model architecture is designed to deeply match the data of the two sets of input features to the corresponding branching model computational mechanisms. The two a priori knowledge injection methods provide more effective features for the model and improve the forecasting performance and understandability of the model. The performance of the proposed model in point forecasting, interval forecasting, and probabilistic forecasting is comprehensively evaluated through the case of a real PV plant. The experimental results show that the proposed model performs well on the task of ultra-short-term PV power probabilistic forecasting and outperforms other state-of-the-art deep learning models in the field combined with QR. The proposed method in this paper can provide technical support for application scenarios such as energy scheduling, market trading, and risk management on the ultra-short-term time scale of the power system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
风趣惜灵发布了新的文献求助10
4秒前
科研通AI6.1应助shi hui采纳,获得10
5秒前
Yule发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
7秒前
杰杰完成签到,获得积分10
8秒前
7373完成签到 ,获得积分10
9秒前
认真的小笼包完成签到,获得积分10
9秒前
9秒前
12秒前
衣裳薄发布了新的文献求助10
12秒前
hahahahah1111发布了新的文献求助10
13秒前
热爱科研的小白鼠完成签到,获得积分10
13秒前
图图完成签到,获得积分10
13秒前
14秒前
自由难破完成签到,获得积分10
15秒前
16秒前
fengw420完成签到,获得积分10
18秒前
cxm发布了新的文献求助10
18秒前
18秒前
22秒前
科研通AI2S应助wenzheng采纳,获得10
22秒前
哈哈哈发布了新的文献求助10
22秒前
cube完成签到 ,获得积分10
23秒前
23秒前
曙光发布了新的文献求助10
24秒前
韩明轩发布了新的文献求助10
25秒前
Orange应助风趣惜灵采纳,获得10
25秒前
朴实子骞完成签到 ,获得积分10
26秒前
Bin完成签到,获得积分10
27秒前
shi hui发布了新的文献求助10
27秒前
30秒前
Mei完成签到,获得积分20
31秒前
朝颜发布了新的文献求助10
32秒前
sci2025opt完成签到 ,获得积分10
32秒前
33秒前
深情安青应助韩明轩采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938