A Deep Learning Quantile Regression Photovoltaic Power-Forecasting Method under a Priori Knowledge Injection

计算机科学 分位数回归 分位数 人工智能 光伏系统 深度学习 卷积神经网络 概率预测 概率逻辑 机器学习 工程类 计量经济学 数学 电气工程
作者
Xiaoying Ren,Yongqian Liu,Fei Zhang,Lingfeng Li
出处
期刊:Energies [MDPI AG]
卷期号:17 (16): 4026-4026
标识
DOI:10.3390/en17164026
摘要

Accurate and reliable PV power probabilistic-forecasting results can help grid operators and market participants better understand and cope with PV energy volatility and uncertainty and improve the efficiency of energy dispatch and operation, which plays an important role in application scenarios such as power market trading, risk management, and grid scheduling. In this paper, an innovative deep learning quantile regression ultra-short-term PV power-forecasting method is proposed. This method employs a two-branch deep learning architecture to forecast the conditional quantile of PV power; one branch is a QR-based stacked conventional convolutional neural network (QR_CNN), and the other is a QR-based temporal convolutional network (QR_TCN). The stacked CNN is used to focus on learning short-term local dependencies in PV power sequences, and the TCN is used to learn long-term temporal constraints between multi-feature data. These two branches extract different features from input data with different prior knowledge. By jointly training the two branches, the model is able to learn the probability distribution of PV power and obtain discrete conditional quantile forecasts of PV power in the ultra-short term. Then, based on these conditional quantile forecasts, a kernel density estimation method is used to estimate the PV power probability density function. The proposed method innovatively employs two ways of a priori knowledge injection: constructing a differential sequence of historical power as an input feature to provide more information about the ultrashort-term dynamics of the PV power and, at the same time, dividing it, together with all the other features, into two sets of inputs that contain different a priori features according to the demand of the forecasting task; and the dual-branching model architecture is designed to deeply match the data of the two sets of input features to the corresponding branching model computational mechanisms. The two a priori knowledge injection methods provide more effective features for the model and improve the forecasting performance and understandability of the model. The performance of the proposed model in point forecasting, interval forecasting, and probabilistic forecasting is comprehensively evaluated through the case of a real PV plant. The experimental results show that the proposed model performs well on the task of ultra-short-term PV power probabilistic forecasting and outperforms other state-of-the-art deep learning models in the field combined with QR. The proposed method in this paper can provide technical support for application scenarios such as energy scheduling, market trading, and risk management on the ultra-short-term time scale of the power system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助wancheng_采纳,获得10
刚刚
3秒前
aaaaal完成签到,获得积分20
4秒前
oyasimi发布了新的文献求助10
5秒前
NexusExplorer应助冷静乌采纳,获得10
6秒前
aaaaal发布了新的文献求助10
8秒前
聂裕铭完成签到 ,获得积分10
11秒前
12秒前
kk完成签到,获得积分10
13秒前
wancheng_发布了新的文献求助20
13秒前
18秒前
20秒前
21秒前
21秒前
22秒前
23秒前
冷静乌发布了新的文献求助10
24秒前
苗条的听寒完成签到,获得积分10
26秒前
26秒前
vanshaw.vs发布了新的文献求助10
27秒前
活力安南完成签到,获得积分10
27秒前
wancheng_发布了新的文献求助10
27秒前
脑洞疼应助renhu采纳,获得10
28秒前
研友_Z72Ydn发布了新的文献求助10
29秒前
CipherSage应助水星采纳,获得10
30秒前
30秒前
柒柒发布了新的文献求助30
31秒前
SciEngineerX完成签到,获得积分10
32秒前
XSB完成签到,获得积分10
32秒前
紫愿完成签到 ,获得积分10
34秒前
先森完成签到,获得积分10
35秒前
英姑应助vanshaw.vs采纳,获得10
35秒前
追寻的雁菡完成签到,获得积分10
36秒前
可爱的函函应助雨曦采纳,获得10
36秒前
wancheng_完成签到,获得积分10
36秒前
LIUJIE发布了新的文献求助10
39秒前
40秒前
43秒前
紧张的刺猬完成签到,获得积分10
44秒前
雨曦完成签到,获得积分20
46秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388