A Collaborative Federated Learning Framework for Lung and Colon Cancer Classifications

结直肠癌 计算机科学 肺癌 医学 癌症 万维网 肿瘤科 内科学
作者
Md. Munawar Hossain,Md. Robiul Islam,Md. Faysal Ahamed,Mominul Ahsan,Julfikar Haider
出处
期刊:Technologies (Basel) [MDPI AG]
卷期号:12 (9): 151-151
标识
DOI:10.3390/technologies12090151
摘要

Lung and colon cancers are common types of cancer with significant fatality rates. Early identification considerably improves the odds of survival for those suffering from these diseases. Histopathological image analysis is crucial for detecting cancer by identifying morphological anomalies in tissue samples. Regulations such as the HIPAA and GDPR impose considerable restrictions on the sharing of sensitive patient data, mostly because of privacy concerns. Federated learning (FL) is a promising technique that allows the training of strong models while maintaining data privacy. The use of a federated learning strategy has been suggested in this study to address privacy concerns in cancer categorization. To classify histopathological images of lung and colon cancers, this methodology uses local models with an Inception-V3 backbone. The global model is then updated on the basis of the local weights. The images were obtained from the LC25000 dataset, which consists of five separate classes. Separate analyses were performed for lung cancer, colon cancer, and their combined classification. The implemented model successfully classified lung cancer images into three separate classes with a classification accuracy of 99.867%. The classification of colon cancer images was achieved with 100% accuracy. More significantly, for the lung and colon cancers combined, the accuracy reached an impressive 99.720%. Compared with other current approaches, the proposed framework showed an improved performance. A heatmap, visual saliency map, and GradCAM were generated to pinpoint the crucial areas in the histopathology pictures of the test set where the models focused in particular during cancer class predictions. This approach demonstrates the potential of federated learning to enhance collaborative efforts in automated disease diagnosis through medical image analysis while ensuring patient data privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CLN完成签到,获得积分10
2秒前
alwry发布了新的文献求助10
2秒前
专注学习完成签到,获得积分20
2秒前
LinTT完成签到,获得积分10
2秒前
sqrt138发布了新的文献求助20
3秒前
渣渣XM发布了新的文献求助10
3秒前
3秒前
帕芙芙完成签到,获得积分10
4秒前
快乐十八发布了新的文献求助10
5秒前
飘逸的山柏完成签到 ,获得积分10
5秒前
光亮天抒完成签到,获得积分10
5秒前
脂蛋白抗原完成签到,获得积分10
6秒前
6秒前
TINASURE完成签到,获得积分20
6秒前
豆小豆完成签到,获得积分10
8秒前
9秒前
一鸣大人完成签到,获得积分10
10秒前
马外奥发布了新的文献求助10
11秒前
kgrvlm完成签到 ,获得积分10
11秒前
orixero应助彳亍采纳,获得10
11秒前
11秒前
miswaterlily完成签到,获得积分10
13秒前
温婉的香水完成签到 ,获得积分10
13秒前
CodeCraft应助虚幻树叶采纳,获得10
13秒前
烟花应助嘲风采纳,获得10
14秒前
缓慢冬莲发布了新的文献求助10
14秒前
小欧医生完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
14秒前
隐形曼青应助AoAoo采纳,获得10
15秒前
15秒前
年轻半雪完成签到,获得积分10
16秒前
neiltang完成签到,获得积分20
16秒前
本杰明巴克应助小陆采纳,获得10
16秒前
大模型应助1002SHIB采纳,获得10
17秒前
希望天下0贩的0应助海潮采纳,获得10
17秒前
18秒前
神光发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012