A Collaborative Federated Learning Framework for Lung and Colon Cancer Classifications

结直肠癌 计算机科学 肺癌 医学 癌症 万维网 肿瘤科 内科学
作者
Md. Munawar Hossain,Md. Robiul Islam,Md. Faysal Ahamed,Mominul Ahsan,Julfikar Haider
出处
期刊:Technologies (Basel) [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 151-151
标识
DOI:10.3390/technologies12090151
摘要

Lung and colon cancers are common types of cancer with significant fatality rates. Early identification considerably improves the odds of survival for those suffering from these diseases. Histopathological image analysis is crucial for detecting cancer by identifying morphological anomalies in tissue samples. Regulations such as the HIPAA and GDPR impose considerable restrictions on the sharing of sensitive patient data, mostly because of privacy concerns. Federated learning (FL) is a promising technique that allows the training of strong models while maintaining data privacy. The use of a federated learning strategy has been suggested in this study to address privacy concerns in cancer categorization. To classify histopathological images of lung and colon cancers, this methodology uses local models with an Inception-V3 backbone. The global model is then updated on the basis of the local weights. The images were obtained from the LC25000 dataset, which consists of five separate classes. Separate analyses were performed for lung cancer, colon cancer, and their combined classification. The implemented model successfully classified lung cancer images into three separate classes with a classification accuracy of 99.867%. The classification of colon cancer images was achieved with 100% accuracy. More significantly, for the lung and colon cancers combined, the accuracy reached an impressive 99.720%. Compared with other current approaches, the proposed framework showed an improved performance. A heatmap, visual saliency map, and GradCAM were generated to pinpoint the crucial areas in the histopathology pictures of the test set where the models focused in particular during cancer class predictions. This approach demonstrates the potential of federated learning to enhance collaborative efforts in automated disease diagnosis through medical image analysis while ensuring patient data privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
执着的日记本完成签到 ,获得积分10
1秒前
1秒前
joysa发布了新的文献求助10
2秒前
mm完成签到,获得积分20
3秒前
xiaohu6311完成签到,获得积分20
3秒前
淳于君浩发布了新的文献求助10
4秒前
4秒前
诗歌节公社完成签到,获得积分10
5秒前
5秒前
温婉的香氛完成签到 ,获得积分10
6秒前
阿槿发布了新的文献求助10
7秒前
小田发布了新的文献求助10
7秒前
桐桐应助LUO采纳,获得10
7秒前
etlincat发布了新的文献求助50
8秒前
9秒前
TIAN发布了新的文献求助10
11秒前
一块云发布了新的文献求助10
12秒前
12秒前
叶y应助是赤赤呀采纳,获得10
15秒前
16秒前
热心市民小红花应助阿槿采纳,获得10
16秒前
热心市民小红花应助阿槿采纳,获得10
16秒前
香蕉觅云应助xiaohu6311采纳,获得10
17秒前
nanali19完成签到,获得积分10
18秒前
紧张的志泽完成签到 ,获得积分10
19秒前
顾矜应助巴适地瓜采纳,获得10
22秒前
淳于君浩完成签到,获得积分10
22秒前
22秒前
小田完成签到,获得积分20
23秒前
刘敏完成签到 ,获得积分10
23秒前
qing发布了新的文献求助10
25秒前
伯赏思山完成签到,获得积分10
25秒前
赘婿应助闪闪的屁股采纳,获得10
25秒前
李爱国应助半夏采纳,获得10
26秒前
27秒前
aixin完成签到,获得积分10
29秒前
Jourmore完成签到,获得积分10
29秒前
小房子完成签到,获得积分10
30秒前
阿槿完成签到,获得积分20
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150