清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Collaborative Federated Learning Framework for Lung and Colon Cancer Classifications

结直肠癌 计算机科学 肺癌 医学 癌症 万维网 肿瘤科 内科学
作者
Md. Munawar Hossain,Md. Robiul Islam,Md. Faysal Ahamed,Mominul Ahsan,Julfikar Haider
出处
期刊:Technologies (Basel) [MDPI AG]
卷期号:12 (9): 151-151 被引量:8
标识
DOI:10.3390/technologies12090151
摘要

Lung and colon cancers are common types of cancer with significant fatality rates. Early identification considerably improves the odds of survival for those suffering from these diseases. Histopathological image analysis is crucial for detecting cancer by identifying morphological anomalies in tissue samples. Regulations such as the HIPAA and GDPR impose considerable restrictions on the sharing of sensitive patient data, mostly because of privacy concerns. Federated learning (FL) is a promising technique that allows the training of strong models while maintaining data privacy. The use of a federated learning strategy has been suggested in this study to address privacy concerns in cancer categorization. To classify histopathological images of lung and colon cancers, this methodology uses local models with an Inception-V3 backbone. The global model is then updated on the basis of the local weights. The images were obtained from the LC25000 dataset, which consists of five separate classes. Separate analyses were performed for lung cancer, colon cancer, and their combined classification. The implemented model successfully classified lung cancer images into three separate classes with a classification accuracy of 99.867%. The classification of colon cancer images was achieved with 100% accuracy. More significantly, for the lung and colon cancers combined, the accuracy reached an impressive 99.720%. Compared with other current approaches, the proposed framework showed an improved performance. A heatmap, visual saliency map, and GradCAM were generated to pinpoint the crucial areas in the histopathology pictures of the test set where the models focused in particular during cancer class predictions. This approach demonstrates the potential of federated learning to enhance collaborative efforts in automated disease diagnosis through medical image analysis while ensuring patient data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是我不得开心妍完成签到 ,获得积分10
5秒前
6秒前
zyc发布了新的文献求助10
10秒前
jlwang完成签到,获得积分10
29秒前
xiaoyi完成签到 ,获得积分10
37秒前
活力的珊完成签到 ,获得积分10
48秒前
1分钟前
ARESCI完成签到,获得积分20
1分钟前
cgs完成签到 ,获得积分10
1分钟前
懒惰扼杀激情完成签到 ,获得积分10
1分钟前
ARESCI发布了新的文献求助10
1分钟前
酷酷的紫南完成签到 ,获得积分10
1分钟前
乐乐应助ARESCI采纳,获得10
1分钟前
汉堡包应助ARESCI采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得150
1分钟前
大个应助完美芒果采纳,获得10
2分钟前
2分钟前
完美芒果发布了新的文献求助10
2分钟前
QCB完成签到 ,获得积分10
2分钟前
踏雪完成签到,获得积分10
3分钟前
jsinm-thyroid完成签到 ,获得积分10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
nav完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Jonathan完成签到,获得积分10
4分钟前
John完成签到 ,获得积分10
5分钟前
舒适的藏花完成签到 ,获得积分10
5分钟前
nannan完成签到 ,获得积分10
5分钟前
高高珩完成签到 ,获得积分10
5分钟前
5分钟前
布吉岛呀完成签到 ,获得积分10
6分钟前
betty2009完成签到,获得积分10
6分钟前
lyj完成签到 ,获得积分0
6分钟前
姚老表完成签到,获得积分10
6分钟前
史克珍香完成签到 ,获得积分10
7分钟前
九花青完成签到,获得积分10
7分钟前
WSY完成签到 ,获得积分10
7分钟前
7分钟前
峪山洛发布了新的文献求助10
7分钟前
陶瓷小罐完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368280
求助须知:如何正确求助?哪些是违规求助? 4496188
关于积分的说明 13996744
捐赠科研通 4401334
什么是DOI,文献DOI怎么找? 2417793
邀请新用户注册赠送积分活动 1410511
关于科研通互助平台的介绍 1386228