亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced prediction of atrial fibrillation risk using proteomic markers: a comparative analysis with clinical and polygenic risk scores

医学 弗雷明翰风险评分 内科学 多基因风险评分 队列 心房颤动 生命银行 风险评估 生物信息学 疾病 生物 基因 生物化学 基因型 单核苷酸多态性 化学 计算机科学 计算机安全
作者
Mengyi Liu,Yuanyuan Zhang,Ziliang Ye,Panpan He,Chun Zhou,Sisi Yang,Yanjun Zhang,Xiaoqin Gan,Xianhui Qin
出处
期刊:Heart [BMJ]
卷期号:110 (21): 1270-1276 被引量:7
标识
DOI:10.1136/heartjnl-2024-324274
摘要

Background Proteomic biomarkers have shown promise in predicting various cardiovascular conditions, but their utility in assessing the risk of atrial fibrillation (AF) remains unclear. This study aimed to develop and validate a protein-based risk score for predicting incident AF and to compare its predictive performance with traditional clinical risk factors and polygenic risk scores in a large cohort from the UK Biobank. Methods We analysed data from 36 129 white British individuals without prior AF, assessing 2923 plasma proteins using the Olink Explore 3072 assay. The cohort was divided into a training set (70%) and a test set (30%) to develop and validate a protein risk score for AF. We compared the predictive performance of this score with the HARMS 2 -AF risk model and a polygenic risk score. Results Over an average follow-up of 11.8 years, 2450 incident AF cases were identified. A 47-protein risk score was developed, with N-terminal prohormone of brain natriuretic peptide (NT-proBNP) being the most significant predictor. In the test set, the protein risk score (per SD increment, HR 1.94; 95% CI 1.83 to 2.05) and NT-proBNP alone (HR 1.80; 95% CI 1.70 to 1.91) demonstrated superior predictive performance (C-statistic: 0.802 and 0.785, respectively) compared with HARMS 2 -AF and polygenic risk scores (C-statistic: 0.751 and 0.748, respectively). Conclusions A protein-based risk score, particularly incorporating NT-proBNP, offers superior predictive value for AF risk over traditional clinical and polygenic risk scores, highlighting the potential for proteomic data in AF risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助耿双贵采纳,获得30
5秒前
8秒前
8R60d8应助Jiayouya采纳,获得10
12秒前
幽默依凝发布了新的文献求助10
12秒前
MR完成签到,获得积分20
28秒前
桐桐应助MR采纳,获得10
38秒前
43秒前
ZaZa完成签到,获得积分10
48秒前
48秒前
张家宁发布了新的文献求助10
54秒前
着急的冬瓜完成签到 ,获得积分10
58秒前
1分钟前
可爱的函函应助小小K采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Suu发布了新的文献求助10
1分钟前
bkagyin应助烟消云散采纳,获得10
1分钟前
1分钟前
兔子完成签到,获得积分10
1分钟前
小小K发布了新的文献求助10
1分钟前
田様应助不可靠的黏菌采纳,获得10
1分钟前
打打应助zilhua采纳,获得10
1分钟前
CipherSage应助肥猪采纳,获得10
1分钟前
1分钟前
徐矜发布了新的文献求助10
1分钟前
2分钟前
2分钟前
肥猪发布了新的文献求助10
2分钟前
烟消云散发布了新的文献求助10
2分钟前
Jiayouya完成签到,获得积分10
2分钟前
NexusExplorer应助石榴汁的书采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
肥猪完成签到,获得积分10
2分钟前
赘婿应助Zhao0112采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
陈毅发布了新的文献求助10
2分钟前
吴端完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765